

 January 2018

Client Trading API – Application Developer’s Kit

API Version 8.9.0+

Developer’s guide

Version 1.1

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

Legal Notices

No part of this document may be copied, reproduced or translated without the prior written

consent of ION Trading UK Limited.

© ION Trading UK Limited 2018. All Rights Reserved.

All company, product, and service names are acknowledged.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 1

Contents

Contents .. 1

About this guide .. 7

Audience ... 7

Related documentation ... 7

Conventions .. 7

Overview .. 8

Introduction .. 8

MiFiD II Support .. 8

Patsystems Architecture .. 10

Parameter Passing.. 11

Function Results ... 12

Licensing ... 12

Getting further help .. 13

Guidelines for Development ... 14

Initial Tasks ... 14

Environments .. 15

Test and Live Environments ... 15

Secure Sockets Layer ... 16

Logging in to Patsystems ... 16

Reference and Trade Data Downloads .. 18

Price & Market Depth Updates ... 20

Retrieving Reference and Trade Data .. 20

Making Trades .. 21

Synthetic Orders ... 22

Fills and Positions .. 23

Logging Off ... 24

Scheduled Downtime ... 24

Message Alerts .. 25

Retrieving Reports .. 25

Order Management Integration ... 25

Running against the DEMOAPI.DLL .. 26

API Reference ... 28

Data Types and Parameters ... 28

Setup Functions .. 29

ptDisable ... 29

ptDisconnect .. 29

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 2

ptDumpLastError ... 30

ptEnable ... 31

ptForcedLogout (callback) ... 31

ptGetAPIBuildVersion ... 32

ptGetConsolidatedPosition ... 32

ptGetErrorMessage ... 33

ptHostLinkStateChange (callback) .. 34

ptInitialise ... 35

ptLogString ... 36

ptMemoryWarning (callback) .. 36

ptNotifyAllMessages ... 37

ptPriceLinkStateChange (callback) ... 37

ptPurgeCompleted (callback) .. 38

ptReady .. 39

ptRegisterAtBestCallback .. 39

ptRegisterBlankPriceCallback ... 40

ptRegisterCallback ... 41

ptRegisterCommodityCallback ... 42

ptRegisterConStatusCallback .. 43

ptRegisterContractCallback .. 45

ptRegisterDOMCallback ... 46

ptRegisterExchangeCallback ... 46

ptRegisterExchangeRateCallback ... 47

ptRegisterFillCallback .. 48

ptRegisterGenericPriceCallback .. 49

ptRegisterLinkStateCallback ... 50

ptRegisterMsgCallback .. 51

ptRegisterAmendFailureCallback .. 52

ptRegisterOrderCallback ... 53

ptRegisterOrderQueuedFailureCallback ... 53

ptRegisterOrderSentFailureCallback .. 54

ptRegisterOrderCancelFailureCallback ... 55

ptRegisterOrderTypeUpdateCallback ... 56

ptRegisterPriceCallback ... 57

ptRegisterSettlementCallback .. 58

ptRegisterSubscriberDepthCallback ... 59

ptRegisterStatusCallback .. 60

ptRegisterStrategyCreateFailure ... 61

ptRegisterStrategyCreateSuccess ... 62

ptRegisterTickerCallback ... 63

ptRegisterTraderAddedCallback ... 65

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 3

ptSetClientPath .. 66

ptSetEncryptionCode ... 66

ptSetHostAddress .. 67

ptSetHostHandshake ... 68

ptSetHostReconnect .. 68

ptSetInternetUser... 69

ptSetMemoryWarning .. 69

ptSetOrderCancelFailureDelay .. 70

ptSetOrderQueuedFailureDelay .. 70

ptSetOrderSentFailureDelay .. 71

ptSetPDDSSL .. 71

ptSetPDDSSLCertificateName ... 71

ptSetPDDSSLClientAuthName ... 71

ptSetPriceAddress .. 72

ptSetPriceAgeCounter.. 72

ptSetPriceHandshake .. 73

ptSetPriceReconnect ... 74

ptSetSSL ... 74

ptSetSSLCertificateName .. 75

ptSetSSLClientAuthName .. 75

ptSetSuperTAS ... 76

ptSetMDSToken .. 76

ptSubscribeBroadcast ... 77

ptUnsubscribeBroadcast ... 77

ptSubscribePrice .. 78

ptUnSubscribePrice ... 78

ptSubscribeToMarket ... 79

ptUnsubscribeToMarket .. 80

ptSuperTASEnabled ... 81

Reference Data Functions .. 82

ptCommodityExists .. 82

ptCommodityUpdate (callback) .. 83

ptContractAdded (callback) ... 83

ptContractDeleted (callback) .. 84

ptContractUpdated (callback) ... 84

ptContractExists ... 85

ptCountCommodities... 86

ptCountContracts ... 86

ptCountOrderTypes ... 86

ptCountReportTypes .. 87

ptCountTraders .. 87

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 4

ptExchangeUpdated (callback) ... 88

ptCreateStrategy .. 88

ptDataDLComplete (callback) ... 92

ptExchangeExists ... 93

ptGetCommodity .. 93

ptGetCommodityByName .. 95

ptGetContract ... 96

ptGetContractByExternalID ... 99

ptGetContractByName ... 99

User Functions .. 100

ptAcknowledgeUsrMsg .. 100

ptCountUsrMsg ... 101

ptDOMEnabled ... 101

ptEnabledFunctionality ... 102

ptGetLogonStatus .. 103

ptGetUserMsg ... 105

ptGetUserMsgByID ... 106

ptLockUpdates ... 107

ptUnLockUpdates .. 107

ptLogOff .. 108

ptLogon .. 108

ptLogonStatus (callback) ... 110

ptMessage (callback) .. 110

ptPostTradeAmendEnabled .. 111

Trading Functions ... 111

ptAddAAOrder .. 111

ptAddBasisOrder .. 112

ptAddBlockOrder.. 114

ptAddCrossingOrder... 115

ptAddOrder ... 117

ptAddOrderEx ... 123

ptAddAlgoOrder ... 124

ptAddProtectionOrder ... 125

ptAmendOrder.. 127

ptAmendOrderEx .. 132

ptAmendAlgoOrder .. 133

ptAtBest (callback) ... 134

ptBlankPrices ... 135

ptCancelOrder .. 135

ptCancelOrderEx .. 136

ptCancelOrderEx2 .. 137

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 5

ptCancelAll ... 138

ptCancelAllEx .. 139

ptCancelBuys .. 140

ptCancelSells .. 141

ptCancelOrders .. 143

ptActivateOrder .. 144

ptDeactivateOrder.. 145

ptCountFills .. 146

ptCountOrderHistory ... 146

ptCountOrders .. 147

ptCountContractAtBest.. 148

ptCountContractSubscriberDepth .. 148

ptFill (callback) ... 149

ptGetAveragePrice ... 150

ptGetContractAtBest .. 151

ptGetContractAtBestPrices .. 153

ptGetContractPosition ... 154

ptGetContractSubscriberDepth ... 155

ptGetFill .. 156

ptGetFillByID... 160

ptGetGenericPrice .. 160

ptGetOpenPosition .. 162

ptGetOrder .. 163

ptGetOrderEx .. 172

ptGetOrderByID .. 173

ptGetOrderByIDEx .. 174

ptGetOrderHistory .. 175

ptGetOrderHistoryEx .. 176

ptGetPrice ... 177

ptGetPriceForContract ... 181

ptGetTotalPosition ... 182

ptOrder (callback) .. 183

ptOrderChecked ... 184

ptGetPriceSnapShot .. 185

ptGetPriceStep ... 186

ptPriceUpdate (callback) ... 186

ptPurge ... 187

ptQueryOrderStatus ... 187

ptSetUserIDFilter .. 188

ptStatusChange (callback)... 189

ptSubscriberDepthUpdate (callback).. 190

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 6

ptTicker (callback) .. 191

Buying Power Functions ... 193

ptBuyingPowerRemaining ... 194

ptBuyingPowerUsed .. 195

ptMarginForTrade .. 196

ptOpenPositionExposure ... 197

ptPLBurnRate ... 198

ptGetMarginPerLot ... 199

ptTotalMarginPaid ... 200

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 7

About this guide

This guide describes how to develop third party applications with the ION:

 Patsystems Client Trading API version 8.9.0+

Audience

This guide is for:

 Third party developers who wish to use the Patsystems Client Trading API to

produce their own front end or interface to a Patsystems trading environment.

This guide assumes that you are familiar with Patsystems’ trading platform terminology.

Related documentation

 N/A

Conventions

This guide uses several conventions for special terms and actions, operating system-

dependent commands, and paths.

Table 1: Conventions

This text formatting … Is used to indicate …

Bold Graphical user interface elements.

Italic New terms.

 Words and phrases that are emphasized.

 Cross-references.

 Names of documents.

 Names of keys.

Monospace Commands, command options, and flags that appear on a separate

line.

 Paths and file names.

 Code examples and output, and message text.

 Variables.

 Values you must provide and text strings you must type.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 8

Overview

Introduction

The API has been developed to allow third party applications to interface to the Professional

Automated Trading Systems (Patsystems) trading engine. Provision to the API is made via a

single Dynamic Linked Library, named PATSAPI.DLL

The PATS API requires the following system configuration:

CPU: 1000MHz or greater

Memory: 512 MB

Operating System: Windows 7 (32 or 64 bit)

 Windows 8

 Windows 10

The API provides a series of functions that will allow order manipulation and operation.

Further functions provide access to reference data.

The API will notify the calling application when events occur (for example, when an order is

filled). This event notification is implemented by supplying the API with a callback routine

that the API will execute on the application’s behalf when the event occurs.

Some of these callbacks return variables filled in by the API. Only ordinal or short strings are

passed in this manner. Where the data is more complex, the calling application will need to

call a query function to obtain the data. For example, the “order updated” callback will

return the order-ID. Further details of the order must be obtained from the API by calling the

“query order” function.

This document does not seek to instruct you in designing or writing your own program.

Advice is limited to how your program should interact with the Patsystems Client Trading

API.

MiFiD II Support

The API has been enhanced to support the Markets in Financial Instruments Directive (MiFiD)

II regulations. An optional parameter has been added to selective functions to allow the

explicit setting of the new fields. If the parameter is omitted, then system configured default

values will be populated on the messages. The following functions have been changed:

Order Action Functions

Activate ptActivateOrder

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 9

Amend ptAmendOrderEx

Cancel ptCancelOrder

ptCancelOrderEx

ptCancelOrderEx2

ptCancelBuys

ptCancelBuysEx

ptCancelSells

ptCancelSellsEx

ptCancelOrders

ptCancelAll

ptCancellAllEx

Deactivate ptDeactivateOrder

To support the regulations the following fields have been introduced:

Field Name Description

clientIdShortCode Exchange short code

clientIdType Type of client

commodityDerInd Commodity Derivative Indicator

DEA Direct Electronic Access

executionDecision Exchange short code

executionDecisionType Type of execution decision

investmentDecision Exchange short code

investmentDecisionType Type of investment decision

liquidityProvider Liquidity provider

shortSelling Short selling indicator

tradingCapacity Trading Capacity

ancillaryTrading Ancillary Trading

fillTimeStamp Microsecond timestamp YYYYMMDD:hh.mm.ss.ssssss

requestInTimeStamp; Microsecond timestamp YYYYMMDD:hh.mm.ss.ssssss

requestOutTimeStamp Microsecond timestamp YYYYMMDD:hh.mm.ss.ssssss

responseInTimeStamp Microsecond timestamp YYYYMMDD:hh.mm.ss.ssssss

responseOutTimeStamp Microsecond timestamp YYYYMMDD:hh.mm.ss.ssssss

These new fields will impact the following data structures:

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 10

Structure Used In

NewOrderStruct ptAddAAOrder

ptAddBasisOrder

ptAddBlockOrder

ptAddCrossingOrder

ptAddOrder

ptAddOrderEx

ptAddAlgoOrder

ptAddProtectionOrder

OrderAmendStruct ptAmendOrder

ptAmendOrderEx

ptAmendAlgoOrder

OrderDetailStruct ptCancelOrder

ptCancelOrderEx

ptCancelOrderEx2

ptCancelAll

ptCancelAllEx

ptCancelBuys

ptCancelSells

ptCancelOrders

ptActivateOrder

ptDeactivateOrder

ptGetOrder

ptGetOrderEx

ptGetOrderByID

ptGetOrderByIDEx

ptGetOrderHistory

ptGetOrderHistoryEx

FillStruct ptGetFill

ptGetFillByID

Patsystems Architecture

A basic understanding of the architecture and terminology used by the Professional

Automated Trading System will be useful when building the application. Note that some

terms are interchangeable. Although this document seeks to be consistent, you may hear

these terms when speaking to Patsystems support.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 11

The client application uses the PATSAPI.DLL (the “API”) to submit orders, receive fills and

receive prices. The orders are sent to the Transaction Server (a.k.a. the “STAS”) where they

undergo validation and are sent to the correct exchange. Acknowledgements, Rejections

and Fills for these orders are returned by the exchanges to the Transaction Server. They are

then routed to the API and notification given to the client application.

Prices are received from the exchanges and routed to the Price Server (a.k.a. the PDD (Price

Data Distributor) which directs them to the API only if requested to do so.

Parameter Passing

The API will accept and return data in one of three formats:

 Binary number

 Single 1-byte character

 Null-terminated character string

Normally, multiple fields will be passed or received. These fields are stored in a packed

record – that is, fields in the record are not aligned on boundaries, they occupy sequential

bytes in memory.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 12

The binary numbers may be single byte or four-byte integer in size. The null terminated

string is an array starting at element zero and terminated by the null (ASCII 0) character.

Strings are provided in “C” format.

The parameters passed into the routines are passed either by reference or by immediate

value. When a variable is passed by reference, the 32-bit address of the variable appears on

the stack. When a variable is passed by immediate value, the actual value appears on the

stack. The parameter passing to the API conforms to the following rules.

 Write access variables are always passed by reference

 Integer variables (8 or 32 bit) that are read-only are passed by immediate value.

 Strings are passed by reference even if they are read-only

 Records are passed by reference even if they are read-only.

The Windows API call stack method is used when calling routines. That is, parameters are

pushed onto the stack from right to left, registers are not used for parameters and the called

routine removes the entries from the stack. Each parameter takes 32 bits regardless of

actual size. This means that where an 8-bit integer is passed by immediate value, the entry

will occupy the entire 32 bits of the stack entry (although the top 24 bits will be undefined).

Function Results

Most calls to PATSAPI return a function result as an integer. This value should be examined

to decide if the call has succeeded or not. Ignoring the status may lead to unexpected

behavior in your application when communicating with the API.

Some functions do not return results. In most cases, these functions are simple routines

requiring little or no validation. Care should still be exercised to ensure that correct data are

passed to these routines. Unexpected behavior may be experienced if invalid information is

sent to these routines.

Success is indicated by a result code of zero (equivalent to the Patsystems supplied

constant ptSuccess). Errors are indicated by a positive result. The actual value returned

indicates the error condition.

The ptGetErrorMessage function can be used to obtain a descriptive error message for the

returned value of an API call.

Licensing

Before you submit your application for conformance testing, choose an Application ID for

your application and submit it to Patsystems for approval. This Application ID should be

chosen to clearly represent your company and application. It may be up to 20 characters

long.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 13

When your application has passed our conformance tests and is approved for production

use, you will be issued with a license key unique to each third-party application. The

application and license pair identify the application to the Patsystems trading engine and is

used to grant access to specific users of the third-party application. It is not possible to use

the API to connect to users that have not been authorized with this information.

The license key is not required to connect to the demonstration API and a specific test key

will be used to connect to our test environments.

To protect your application from theft, the license details for production connections must

be embedded non-visibly in your application. It is not recommended that these details be

displayed in free text either on the screen or in a text file.

Getting further help

You can do much of your initial development using the DEMOAPI.DLL supplied with the kit.

However, you may wish to purchase access time to our test servers to obtain a production

style response (the demonstration DLL attempts to simulate real life but cannot be expected

to match exactly). To purchase server time please contact apisupport@patsystems.com and

request access to the servers.

Finally, if you do not receive a suitably timely response, or need to provide us with

diagnostic files, you can contact us via email on apisupport@patsystems.com.

mailto:apisupport@patsystems.com
mailto:apisupport@patsystems.com

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 14

Guidelines for Development

This section provides guidelines for developing a trading application using the PATSAPI

library. It describes the recommended methods for performing some of the tasks such an

application may need. These recommendations are drawn from the experience of writing

the Patsystems client to use this DLL.

Initial Tasks

There are some initial functions that must be executed before performing any trading using

the API. These tasks configure the API for use and perform some basic checks. Follow these

steps:

 The API will generate and use files on a given path. The default path for these files is

the path of the executable using the API. To change the path, call ptSetClientPath

before initializing the API.

 Initialise API using ptInitialise. This initializes the data structures in the API and must

be performed before any other steps. It also accepts the application ID and license

number used later to verify access to Patsystems.

 Set any diagnostic information flags using ptEnable. Use these only when initially

developing your application, as the functionality can result in large log files

(especially price diagnostics).

 Set SSL and the SSL Certificate Name using ptSetSSL and ptSetSSLCertificateName if

SSL is being used.

 Set IP configuration details using the following two calls. These calls define the

connection details of the Patsystems Transaction Server (Host) and the Patsystems

Price Server:

 ptSetHostAddress

 ptSetPriceAddress

 Register the required callback routines using ptRegisterLinkStateCallback for the

host connection and ptRegisterCallback to register for ptLogonStatus and

ptForcedLogout callbacks.

 Register any other optional callback routines

 Set any other API control parameters. For example, by calling ptNotifyAllMsgs

 Start the API processing by calling ptReady

After ptReady has been called, the API will attempt to connect to the Host using the IP values

previously specified. The IP socket will undergo several rapid state changes before becoming

connected. The normal state change sequence is Opened-Connecting-Connected.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 15

If the link fails, it will move from the last state to Closed immediately and then wait for a

configurable period before re-attempting the connection. This period has a minimum of 5

seconds.

The callback data structure is defined in the header file:

void WINAPI CPatsConnection::OnHostLinkStateChange(LinkStateStructPtr pData)

{

 g_Pats().CheckPatsOrderEntryServerConnectionState(pData);

}

.

.

if(m_Api.ptRegisterLinkStateCallback(ptHostLinkStateChange,

CPatsConnection::OnHostLinkStateChange) != ptSuccess)

{

 return false;

}

Note: The Price Feed is not connected to at this stage. Prices are not available until

after a successful log on.

It is possible to disconnect from the servers and then reconnect without closing the

application, using a call to ptDisconnect. This will close links to the host and price feed. You

can then also change address of either server by making calls to ptSetHostAddress or

ptSetPriceAddress. To re-establish connections, the application must call ptReady, followed

by a call to ptLogon.

Environments

Test and Live Environments

ptInitialise is for specifying which environment you are connecting to and for controlling

certain API behaviour. Normal API behavior is specified with either the ptClient or

ptTestClient environments. This will deliver all order state changes, including the

Unconfirmed Filled and Unconfirmed Part-Filled states that can result from the Eurex and

a/c/e exchanges. The delivery of the Unconfirmed states can be suppressed by specifying the

ptGateway or ptTestGateway environments.

To connect to a test environment, such as out servers in London or Chicago to perform

conformance testing, you must use either the ptTestClient environment or the

ptTestGateway environment. Connection to production servers requires using the ptClient or

ptGateway environments. The logon will fail if you try to log on to a test server when you

have set a production environment or vice versa.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 16

Connection to the demonstration DLL is available only with the ptDemoClient environment.

Secure Sockets Layer

The API will communicate over Secure Sockets Layer as well as regular IP. To do so you will

need to know if the remote server is using SSL. If it is, you will need a certificate to install

locally – failure to do this will result in the SSL connection being classed as untrusted and

the connection will not be made.

Also, you will need to know the SSL Certificate Name – this value is communicated to the

Secure Sockets Layer and checked at the server side. If the value is not correct then the

connection will not be established.

Errors in creating Secure Sockets Layer connections are logged by the API in

PATSDLLerror.log

Logging in to Patsystems

Before starting to trade, you must complete an application logon to Patsystems. In this

action the application supplies the Patsystems user name and password for the trader and

these are validated on the Patsystems Transaction Server along with the application ID. and

license number specified in ptInitialise. A return status will be returned to your application

via the ptLogonStatus callback when the logon has been validated.

Logon cannot occur until the API has connected to the Host. This is indicated by the

ptHostLinkStateChange callback, which will show the old and new states of the IP socket

defined as the Host socket in the previous phase.

To complete the logon:

 Wait for ptHostLinkStateChange to show “Connected”.

 Wait a few seconds (3-5) while API sets encryption detailed structures.

 Issue logon request by calling ptLogon.

 Wait for ptLogonStatus callback to fire.

 Call ptGetLogonStatus to obtain logon status details.

 If status is ptLogonSucceeded then wait for ptDataDLComplete callback to fire.

The Patsystems trading engine uses the following information to determine if the log on is

allowed:

 User Name

 Password

 Application ID entered in ptInitialise

 License entered in ptInitialise.

 Environment

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 17

If logon was not successful, then the reason will be supplied in the data returned by

ptGetLogonStatus.

If the logon was successful, the API will attempt to connect to the Price Server using the IP

address and socket defined in the set-up phase. The status of this connection will be

reported by the ptPriceLinkStateChange callback.

Example:

if (m_Api.ptRegisterCallback(ptLogonStatus, CPatsConnection::OnLogonStatus) !=

ptSuccess)

{

 return false;

}

if (m_Api.ptReady() != ptSuccess)

{

 // API not initialised

 return false;

}

//Set up data structure for logon, read form ini file

LogonStruct logon;

memset(&logon, 0, sizeof(LogonStruct));

strncpy(logon.UserID, m_settings.GetString(strIniFileUserID, "USER").data(),

 sizeof(logon.UserID));

strncpy(logon.Password, m_settings.GetString(strIniFilePasswd, "PASS").data(),

 sizeof(logon.Password));

logon.Reset = 'Y';

//This is waiting for the host socket to connect

DWORD dwWaitTime = WaitForSingleObject(m_hReadyToLogon, 30000);

if(dwWaitTime == WAIT_TIMEOUT)

{

 return false;

}

::Sleep(1000); // small delay to assure smooth logon

int nErr = m_Api.ptLogOn(&logon);

if (nErr != ptSuccess)

{

 return false;

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 18

}

Reference and Trade Data Downloads

If logon was successful, the API receives its reference data and stores it locally in memory.

When this download has completed, the ptDataDLComplete callback fires. This event signals

that the API is now in a state to process orders and other requests.

However, if reference data has not altered since the last log on, it is not downloaded (the API

stores a local copy on exiting). Therefore, a varying amount of time may elapse between a

successful ptLogon and receiving the ptDataDLComplete callback. Note that the callback will

always fire to signal that the reference data is up to date and valid, even if a full download

did not occur.

Full reference and trade data is downloaded under the following conditions:

 It is the first logon of the day.

 The username is different from the last username used.

 The “reset” field in ptLogon has been set.

 The user’s data has been changed by the system and risk administrator.

The result of this is that if a user logs out of the application and logs back in again using the

same user name and the local reference data is believed to be correct then a reload is not

received from the transaction server, resulting in a faster reconnection.

Tip: [If there has been a connection loss, get the latest guaranteed order states by

setting the reset field to “Y”. This is particularly relevant if you have order

states that show as “Queued” for a significant time].

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 19

Example:

void WINAPI CPatsConnection::OnReferenceDataReady()

{

 //The trading data is available, so we can start downloading the information

 g_Pats().OnTradingDataAvailable();

}

void CPatsConnection::OnTradingDataAvailable()

{

 //The trading data has been downloaded from the Pats server, and is now

 //ready for us to use

 std::cout << "REFDATA: Reference Data has been downloaded" << std::endl;

 SetEvent(m_hReferenceDataAvailable);

}

//--

if(m_Api.ptRegisterCallback(ptDataDLComplete, CPatsConnection::OnReferenceDataReady) !=

ptSuccess)

{

 return false;

}

//We want to wait for the both the logged on event, and the reference data

//available event to occur before we continue with the logon

HANDLE events[2] = { m_hLoggedOn, m_hReferenceDataAvailable};

//Login is synchronous, so block until sequence completes

dwWaitTime = ::WaitForMultipleObjects(2, events, TRUE, 60000); //60 second timeout

//If we didn't get a response from Pats within 60 seconds, or there

//was an error logging in, then return

if (dwWaitTime == WAIT_TIMEOUT)

{

 _ASSERTE(0);

 return false;

}

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 20

Price & Market Depth Updates

The Price Server (PDD) will not supply any price data until it has been requested by the API.

This is not an automatic process and the client application must specifically tell the API what

prices it wants to receive. This is done by calling ptSubscribePrice which takes the exchange

name, contract name and contract date as parameters.

The application can discontinue the supply of prices by calling ptUnsubscribePrice. Multiple

calls can be made to ptSubscribePrice, and the same number of corresponding calls to

ptUnsubscribePrice are required to cause the price subscription to be discontinued. This

allows your application to subscribe and unsubscribe the same price from multiple windows

without accidently stopping your price stream while there is still a window requiring prices.

For example, if Window A and Window B both subscribe to the Mini S&P, when Window B is

closed and the price unsubscribed, the price stream will still supply the Mini S&P prices

required by Window A.

Once the Price Server has been notified of which prices to provide, updates to these prices

are notified by the ptPriceUpdate callback. This will provide the contract that the price

applies to and is issued every time a price changes.

To obtain the price details you must call the ptGetPriceForContract routine to obtain the

price details. This call will return the current price details listed below.

Bid, Offer, Implied Bid, Implied Offer, Last 20 Trades, High, Low, Opening, Closing, Total, Bid

Depth-of-Market 0 through 9, Offer Depth-of-Market 0 through 9.

The volume is returned along with the price if this is appropriate and a price age counter is

also provided to show when the price was last updated. The number of seconds before the

age counter expires is configurable by calling ptSetPriceAgeCounter. If a price update

callback executes and this counter is zero, then the age counter has expired. The

ptPriceUpdate callback is issued when a stale counter expires.

Note: Age counters are maintained for all price items, including depth, opening,

closing, lows and highs. These all expire and this at first may seem to be

unusual, but the expiry must be taken in context. For example, a new intra-

day high price will shortly expire due to the low frequency of updates.

A direction indicator is also provided with the Price information, indicating the direction of

movement from the previous price.

Retrieving Reference and Trade Data

The PATS API provides access to all reference data required to implement a trading

application. This data is stored internally to the API in memory lists, which are indexed from

zero. This imposes some restrictions on how the data may be accessed while retaining an

efficient application.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 21

All general reference data items provide at least two routines:

 ptCountnnnnnn - returns total number of items in list

 ptGetnnnnnn(x) - returns a single item from the list by position x

This allows reference data to be read from the API by the application using a loop. The count

function is used to return the total records and this value defines the end of the loop. For

each iteration of the loop, the get function is used to return an item.

In some cases, filtered access to the list will be provided for the primary key as long as this

will return a unique record. In no cases will indexed access be provided with a filter on a non-

unique key.

Making Trades

Once the application has logged on to the host, received the reference data update and

subscribed to all the prices it wants, the application is in a state to enter trades into

Patsystems. The following two points are key to this process:

 All orders processed by Patsystems are identified by a Patsystems Order ID

 All orders undergo several state changes during their lives.

During its life, the order will undergo a number of state changes, identified by the State field

returned by ptGetOrder(ByID). These states are defined in the reference section for the

ptGetOrder routine and the ptOrder callback.

Normally, whenever the order undergoes a state change the callback ptOrder will fire,

returning the Patsystems Order ID of the order that has changed. There are two identifier

fields, and old and new order ID. This is used to tie the temporary identifier to the

Patsystems order identifier at the point the order goes to the sent state for connections to a

standard TAS. Connections to an S-TAS will contain the Patsystems Order ID from the

queued order state.

As the order states change, new records are assigned to each order in the list of orders held

in the API. The most recent record for each order reflects the most recent state and the

earlier ones make up an order history (these history records are held in a separate list for

each order). ptGetOrder(ByID) will only provide the most recent record pertaining to the

order. To obtain historical order information, use the ptCountOrderHistory and

ptGetOrderHistory functions.

Rapid order state changes will trigger the callback for each state change, but you may find

that by the time you call the query function to find the new state, the underlying data has

been updated to reflect the new order state, leading to the appearance that an order state

has been missed. It is important to remember that the query function ptGetOrder(ByID) will

return the most recent state and the “missing” state will be found in the order history.

As an example, an order might go through the following states in its life:

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 22

 Queued, Sent, Working, Part Filled, Filled

Existing orders that are still active may be amended using the ptAmendOrder call or

cancelled using the ptCancelOrder routine. The Patsystems order ID is specified to these

routines to identify the order. As well as cancelling a specific order, groups of orders may be

cancelled using ptCancelBuys, ptCancelSells and ptCancelAll.

Synthetic Orders

Synthetic orders provide Stop or Stop Limit behaviour where an exchange interface does not

support Stop or Stop Limit orders. There are two kinds of synthetic orders, but this section is

concerned with the ones managed locally within the API. These orders are stored locally in

the API until they are triggered by the appropriate price, at which point they are submitted

to the transaction server for processing. An Order ID beginning with the letter ‘S’ identifies a

synthetic order.

The synthetic ‘S’ Order ID remains while the order is in a held state. The order may be

retrieved, cancelled or amended by accessing it using this Order ID. During this time, the

Display ID remains blank. When the Order is sent and acknowledged by the transaction

server the Order ID is set to the Patsystems Order ID. At this point, the Display ID is set to the

Patsystems Order ID and any history records for the order are also updated. An Order

callback will be triggered indicating the previous Order ID, and the new Order ID.

Stop Limit orders require a second price. The first price, the trigger price, is placed in the

Price field. The second price, the limit price, is placed in the Price2 field. This second price

field is not used for market, stop or limit orders.

Synthetic orders are deleted on log out because they are held internally to the API and the

act of logging out suggests a lengthy disconnection period will be started.

They are not deleted when calling ptDisconnect or when the price feed temporarily

disconnects due to a network problem, but be aware that these actions disconnect the price

feed that would trigger the order. There is some risk that when the price feed is re-

established that the synthetic order will trigger and that this will be later than desired. You

may wish to add functionality that detects a lengthy disconnection of the price feed and

suggests cancelling synthetic orders.

The alternative to these locally managed orders, which are lost on logout and cannot be

shared between users, is to use the Synthetic Order Management System at the clearer. This

optional SyOMS server will manage the orders within the server architecture, which means

they can be shared and are persisted over a logout. The range of synthetic orders supported

by SyOMS is also greater.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 23

Fills and Positions

Fills may be received in three ways: response to an order, in response to a fill entered by the

administrator (external fills) or from Patsystems to show the previous overnight position

(netted fills). Fills are notified by the ptFill callback which provides the Patsystems order ID

and the Patsystems Fill ID.

If the fill is for an order, the callback contains the OrderID. If the fill is not for an order, then

the callback contains the string EXTERNAL or NETTED as appropriate. An EXTERNAL fill is one

entered by the Risk Administrator to reflect a trade not done on the Patsystems servers. A

NETTED fill is the method by which an overnight position is reflected the next day – a fill for

the held position will appear with a price of the settlement price of the contract.

Fills are notified by the ptFill callback. The order record itself contains the amount filled so

far and the average price of the fills. The API records the fill details for each fill as it is

received, and this detail may be obtained by calling ptGetFill. This provides indexed access

and is used in conjunction with ptCountFills to read the list of all fills. To return fills for an

order or contract, the entire list of fills must be read, and unwanted records discarded.

A new function ptGetFillByID can be used to retrieve the fill that caused the callback to

trigger, providing a quick means of obtaining the details as they arrive. Fills are stored in a

list sorted by Fill I.D., so it is not possible to assume that new fills appear at index entry

“n+1”.

The fill and order states are delivered by different messages and trigger separate callbacks.

There will be a message for the order state change to reflect the fill that will trigger the

ptOrder callback and a message for the fill details to reflect the price and volume of the fill,

which will trigger the ptFill callback. Patsystems does not guarantee that the fill and the

order state change are delivered in any order. You might receive the fill callback a fraction

before the order state callback, so you must code your application to deal with this potential

situation. Also, be aware that external fills are delivered by this same mechanism and do not

cause an order state change at all.

The API also maintains trading position within contracts. This information can be returned

by calling ptGetOpenPosition which will return the open profit and the buy/sell position for a

trader account within a contract, and ptGetAveragePrice, which will return the average

prices for the fills making an open position in a contract. A third routine,

ptGetContractPosition, returns the total profit and total buys and sells for a trader in a

specific contract. Closed profit can be calculated by subtracting the open profit (from

ptGetOpenPosition) from the total profit (from ptGetContractPosition). Finally,

ptGetTotalPosition will return the total profit and total buys and sells for the trader over all

contracts.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 24

Logging Off

There are two choices for terminating connection to our servers. Your choice will depend on

your intentions after this disconnect.

Calling the ptLogOff function disconnects the user application from the system and saves

reference (e.g. contracts, orders) data to disk. This will break the link to the transaction

server, and will free the data structures used in the API and requires the application to

terminate or otherwise unload the dll. Further calls to the API will return ptErrNotInitialised

and may have unpredictable behaviour. This is a formal means of shutting down your

applications completely and is the mechanism we use for our screen based trading front-

end, after which we terminate our program.

An alternative to calling the logoff routine is to call ptDisconnect, which breaks the

connection to the server without freeing API structures. After making this call, you can re-

enter the IP and socket information by calling the ptSetHostAddress and ptSetPriceAddress

functions, call the ptReady function to restart API processing and then log back on again

using ptLogon. This is a formal means of disconnecting from our servers while leaving your

application running and is the mechanism we use for our FIX trading gateway.

Logging off deletes any synthetic orders from the API, but does not issue callbacks to

indicate this fact.

Scheduled Downtime

The Patsystems servers run an End Of Day process each day. The time this process runs

varies between connectivity providers, so contact your provider to find out what time your

system will be down. For example, many servers run EOD at 4pm Chicago time in the USA,

but in the UK this may be done at 10 or 11pm London time.

The EOD process cannot be run while users are connected to the system and any users that

are connected will be forced off. This forced logoff behaves the same way as your

application calling ptLogoff and requires an application termination.

If you wish your application to remain running and reconnect automatically, you must

ensure your application calls ptDisconnect before EOD reaches the point of sending the

forced logoff. EOD is a scheduled activity and will start at a predictable time each day,

shortly after the last exchange has been closed for trading.

The system is opened for trading again as a scheduled activity, which also occurs at a

predictable time each day. It is okay to attempt a logon before this time as long as it is after

the EOD process has started (so you do not receive the forced logout message). If EOD is still

in progress then the logon will be rejected with a message of “All users are currently locked

out of the system”, but the API will remain in a running state and further logons can be

attempted until connection is established. A period of at least 10 seconds is recommended

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 25

between attempted logons to avoid overloading the servers. A logon will be accepted as

soon as EOD has finished, and this may occur before the system is opened for trading.

Message Alerts

The ptMessage callback fires to indicate that there are messages or alerts of interest to the

user. This callback provides a message ID that can be used to query the API to obtain the text

of the message by using ptGetUsrMsg. Once the message has been viewed, it may be

acknowledged by ptAcknowledgeUsrMsg.

Messages and alerts are issued for such things as order changes, fill arrival and manually

issued messages from the system administrator.

Retrieving Reports

The Patsystems trading engine provides trading reports for each day of the week for each

user. The following reports types are implemented. The strings shown below are the correct

values to pass into the routines to obtain a report.

“Monday Trades”, “Tuesday Trades”, “Wednesday Trades”, “Thursday Trades”,

“Friday Trades”

These Report Type strings are stored internally to the API and can be obtained by calling

ptGetReportType. The report types are returned in alphabetical order, not in day-of-week.

That is, query the API for all report types will return “Friday Trades”, “Monday Trades”,

“Thursday Trades”, “Tuesday Trades”, “Wednesday Trades”.

These reports are obtained by issuing two calls. First, ptGetReportSize is called to get the

total size in bytes of the report including the null terminator character. Secondly,

ptGetReport is called to obtain the data, providing the API with a suitable sized data buffer in

which to write the report data.

Obtain a report using the following method:

 Call ptGetReportSize to obtain size of buffer needed.

 Allocate a contiguous section of memory of the correct size.

 Call ptGetReport passing the address the start of the memory block.

The data returned in the buffer contains the entire text report, containing embedded CR-LF

at the end of every line.

Order Management Integration

Order Management Integration allows the grouping and managing of multiple exchange

execution orders to satisfy client requests and aggregations, and is used to assist brokers in

managing the large client requests that are worked over an extended duration of the day in

multiple execution orders.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 26

If Order Management Integration (OMI) is enabled for the session, the user will have data

structures to allow for alternative back office processing. OMI will need to be enabled on the

core components, and calling ptOMIEnabled will allow the client application to determine if

the OMI functionality is enabled.

The following definitions explain the relationship between the different orders:

 Aggregate: This is the level at which a trade gets allocated, therefore if you wish to

allocate many orders for one client as one Aggregate you must make sure they are

parented to one block. This is held as a typical order structure with the Aggregate

order type (ID = 25)

 Customer Request: This contains details of a whole order such as buy 10,000

contracts at 101.04. This will be what a trader works and will have a price and

quantity and buy/sell indicator. Many orders can be aggregated together under one

Aggregate Order for allocation purposes.

 Order: This is the level at which the order is executed at the exchange (i.e. this is a

Patsystems order).

An order has a one-to-many relationship with a customer request, which in turn has a one-

to-many relationship with an aggregate order. An example would be a client who called once

to work a 10,000-lot order. This would result in one aggregate order (to control allocation),

one customer request (to define the specific request to work 10,000 lots) and many

execution orders sent over the course of the day to the exchange.

Running against the DEMOAPI.DLL

You can develop your system initially without making a link to the Patsystems development

environment by running your application against our demonstration API. This file is released

as DEMOAPI.DLL and must be loaded instead of PATSAPI.DLL. As a security measure, you

must inform the API that your application knows it is talking to the demonstration DLL by

setting the Env variable in ptInitialise to ptDemoClient. If this is not done, the logon call will

fail.

There is a restriction in the functionality of the DEMOAPI.DLL and it should be used only to

gain understanding of how to make the function calls. It does not behave the same way as

the production system for business flows. Patsystems strongly recommends you request

server access time to our test servers to continue development using the real PATSAPI.DLL to

experience correct business flow responses.

The demonstration DLL does not require a license key or application ID and is included in the

developer’s kit.

The demo requires the following data files to simulate the environment, which are included

in the kit:

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 27

 testacct.txt - trader accounts

 testcont.csv - commodities

 testdate.csv - contract dates

 testotype.txt - order types

 testreps.txt - reports

 testrtype.txt - report types

The DEMO DLL provides full functionality with the following exceptions:

 Logins are never rejected

 Prices are fed at a potentially slower rate than a busy live market

 Orders over 100 lots are rejected

 No other order rejections occur

 Trades are not accepted unless you have subscribed to a price

While it may be possible with the production API to trade without a price feed, this type of

application will be disallowed when connected to a cash margining system in this version of

the API.

The DEMO DLL provides a simulated price feed and simple trade matching technology:

 The price feed generates prices automatically between the upper and lower limits

set in the testdate.csv file.

 Depth of Market is also randomly generated.

 Trades will be matched if possible, using this price data

 Trades will be reflected in the Depth of Market

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 28

API Reference

Data Types and Parameters

This chapter details the function calls provided by the API. The following conventions appear

in the document:

Table 2: Conventions

Type Description

Case sensitivity: The routine names appear in the DLL export table exactly as they

appear in this document. However, case-sensitivity is language

dependant and some languages may resolve these references

regardless of case.

 “char” Single-byte ASCII character

“byte” Single-byte integer

“integer” Four-byte integer

“string[n]” Strings are zero-based arrays of ASCII 1 byte characters, terminated by

the null character. Where an array limit “[n]” is specified the array is

deemed to be defined as [0..n] of char. Where no array limit is

specified, the string may be any length up to 255 as long as it is null

terminated.

“struct” Structures are always packed (byte aligned) records containing the

preceding data types.

Floating Point Numbers Floating point numbers are always passed as ASCII strings. Prices

include implied decimal places for contracts ticked in fractions (for

example, 100.08 is 1008/32 if the contract is in 1/32nds).

Immediate mechanism Applies only to read-only parameters of char or integer type.

Immediate passing expects a value on the stack and takes up 32 bits

regardless of size. For example, a char or byte will occupy the bottom 8

bits and the remaining 24 bits are ignored.

Reference mechanism Applies to any write-access parameter and all string or structure

parameters. Reference passing expects the address of the variable or

structure on the stack.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 29

Setup Functions

The following functions initialise and define the working parameters of the API, or confirm

architecture level settings such as whether the API is connected to a SuperTAS or not. Many

of these functions must be completed before calling functions in later sections.

ptDisable

This routine disables the diagnostic option specified in the integer bitmask.

Arguments: Code (integer read only, immediate value)

Returns: none

Argument/Returns Value

Code This is an integer bitmask where each bit corresponds to a particular

debugging option. The options are:

 bit 0 show program flow and messages

 bit 1 show traffic to/from host

 bit 2 show traffic to/from price server

 bit 3 show depth-of-market flow

 bit 4 show order processing

 bit 5 write procedure call log on normal exit

 bit 6 show calls to API

 bit 7 show detailed log of IP socket and locking

ptDisconnect

This routine disconnects the current Host and Price Feed connections.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 30

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successfully disconnected connections.

 ptErrNotInitialised API is not initialised.

This function does not delete any synthetic orders in the held-order state. However, note

that the price feed that triggers these orders has been disconnected and this may lead to

unexpected behaviour. Reconnection and logon with either a different user or with the same

user and the reset flag enabled will delete the synthetic orders by implication – these actions

clear the existing order list and reload it from the data sent from the server. As these orders

do not exist on the server, they no longer exist.

Patsystems recommends that you cancel any synthetic orders before calling ptDisconnect to

avoid undesired (delayed) triggering of synthetic orders when the price feed is reconnected,

especially if you intend to be disconnected for an extended period.

After calling ptDisconnect it is then possible to call ptSetHostAddress and/or

ptSetPriceAddress before calling ptReady again to reconnect to the servers. Once

reconnected, ptLogon can be called to log back in to the servers.

ptDumpLastError

This routine causes the API to write debug information to a file (PATSDLLError.log) for the

last error that occurred. It is possible for most API routines to return a result of

ptErrUnexpected. If this occurs, the application should call ptDumpLastError

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successfully completed error dumps.

 ptErrFalse API is not initialised.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 31

ptEnable

This routine enables the diagnostic option specified in the integer bitmask. Price diagnostics

(bit2) and IP socket flow diagnostics (bit7) should only be enabled to debug your

application, since they can adversely affect performance and produce potentially large files

if left running for any length of time in a production environment.

Arguments: Code (integer read only, immediate value)

Returns: None

Argument/Returns Value

Code This is an integer bitmask where each bit corresponds to a particular

debugging option. The options are:

 bit 0 show program flow and messages

 bit 1 show traffic to/from host

 bit 2 show traffic to/from price server

 bit 3 show depth-of-market flow

 bit 4 show order processing

 bit 5 write procedure call log on normal exit

 bit 6 show calls to API

 bit 7 show detailed log of IP socket and locking

Common useful values are decimal 19 (i.e. bits 0,1 and 4) and 83 (i.e. bits

0,1,4 and 6). The value 255 is not recommended for production use, as it

will turn on price feed diagnostics. In a live environment this will result

in very large log files if prices are subscribed to.

ptForcedLogout (callback)

The ptForcedLogout callback notifies that the Transaction Server has forced the API to

disconnect, and it should not try to reconnect. The application should either close down

immediately, or give the user a message before closing down.

Arguments: none

Returns: none

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 32

The callback must be registered by the ptRegisterCallback routine using the Callback ID of

ptForcedLogout.

This message will be received if the application is left connected while the End Of Day

process is being run on the servers.

Receipt of this message requires the API to be unloaded – it is not possible to leave the API

up and use the ptDisconnect mechanism. If the API is to be left running over EOD,

ptDisconnect must be called before this callback can be received. EOD runs at a fixed time

each day, so this should be possible.

ptGetAPIBuildVersion

The ptGetAPIBuildVersion routine is used to obtain the build version number of the API. This

information may be useful in an “About” box for your application. It is important to know the

build version when discussion potential programming errors within our API.

Arguments: APIVersion (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

APIVersion A structure of type APIBuildVer, which consists of one string[26] element

in which the version information will be supplied as a text string.

Status ptSuccess Successfully return of data

ptGetConsolidatedPosition

When a contract date expires it is allowed to be purged from memory along with its orders

and fills when ptPurge is called. The API therefore consolidates the trader’s fills which allows

the API to calculate the trader’s position.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 33

Arguments:
 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 PositionType (integer read-only, immediate value)

 Fill (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Name of the exchange

ContractName Contract name

ContractDate Tradeable contract date name

TraderAccount Trader account name

PositionType There are two types of consolidated positions: Start of Day and End of

Day. The Position type takes in one of two integer values:

 ptGTStartOfDay = 0 Start of day position for the given contract

 ptGTEndOfDay = 1 End of day position for the given contract

Fill Consolidated position

Status ptSuccess Successfully completed error dumps.

 ptErrNotInitialised API is not initialised

 ptErrNotLoggedOn User is not logged in

 ptErrNoData Contract date specified cannot be found

ptGetErrorMessage

The ptGetErrorMessage routine is used to obtain a text explanation of a Status code returned

by other API routines.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 34

Arguments: ErrorNo (interger read only, immediate value)

Returns: ErrorMsg (pointer)

Argument/Returns Value

ErrorNo A status code returned by another API routine

ErrorMsg Message text associated to the ErrorNo

This routine does not return an error code. Make sure that that valid data is passed to the

routine. The return value of this routine is the address of a null terminated character string

containing a description of the error.

ptHostLinkStateChange (callback)

The ptHostLinkStateChange callback notifies that the IP socket has undergone a state

change. The old and new states are returned in the data parameter. This routine is provided

by the application to be executed by the API whenever the IP link to the Host alters state.

Arguments: Data (struct writeable, by reference)

Returns: none

Argument/Returns Value

Data Address of a structure of type LinkStateStruct. The application routine

will receive the link status details in this parameter. LinkStateStruct is

defined as:

 LinkStateStruct read-only, by reference

 OldState: byte

 NewState byte

The link states can be one of:

 ptLinkOpened - socket created

 ptLinkConnecting - socket connecting to remote socket

 ptLinkConnected - socket connected to remote socket

 ptLinkClosed - socket connection has been closed

 ptLinkInvalid - unknown or unexpected state

This callback routine must be registered with the ptRegisterLinkStateCallback routine.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 35

ptInitialise

The ptInitialise routine allocates internal data-structures for the API. It also loads the local

copy of the reference data (e.g. list of contracts, exchanges, orders, fills), but the reference

data is not valid until a logon has occurred. Until this routine is executed, no other calls have

any meaning.

Arguments:
 Env (char read-only, immediate value)

 APIversion (string read-only, by reference)

 ApplicID (string read-only, by reference)

 ApplicVersion (string read-only, by reference)

 License (string read-only, by reference)

 InitReset (Boolean read-only, by reference)

Returns: status (integer)

Argument/Returns Value

Env A single character describing the environment the API is expected to

work under. May be one of ptClient, ptTestClient, ptDemoClient,

ptGateway or ptTestGateway.

APIVersion Address of a string variable containing the API’s version number. This is

provided as a check that the application is linked to the expected

version of the API.

ApplicID Address of a string variable containing the application ID provided by

Patsystems. This information is checked during the ptLogon call as the

Patsystems trading engine enables the API on a per user basis.

ApplicVersion Address of a string variable containing the version number of the

application. This is defined by the external application and is used for

reference only.

License Address of a string variable contains the license string provided by

Patsystems. This information is checked during the ptLogon call

because the Patsystems trading engine enables the API on a per user

basis. This license is not required to run against the DEMO DLL or our

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 36

Argument/Returns Value

test systems. The license key is issued once your application has passed

the conformance test.

InitReset Allows the client to advise the Trading API not to load the contract and

order information during the initializing process performed by the API.

Setting this to true will reduce the initializing time considerably, but will

cause the download time to increase as a result of having to refresh all

of the order and fill data

Status ptSuccess Successfully completed error dumps.

 ptErrNotInitialised API failed to create data structures.

 Do not Use

 ptErrWrongVersion API is not for expected version.

To protect your application from theft, the license details for production connections must

be embedded non-visibly in your application. It is unacceptable to display these license

details in free text either on the screen or in a text file.

ptLogString

ptLogString logs the text contained in the DebugStr parameter to the PATSDLLtrace.log file.

Arguments: DebugStr (string[251], read-only by reference)

Returns: status (integer)

Argument/Returns Value

DebugStr Message string to trace in the log file

Status ptSuccess Successful

 ptErrNotInitialised API is not initialised.

ptMemoryWarning (callback)

The ptMemoryWarning callback will trigger when the available memory on the system gets

low. The percentage figure that causes this callback to trigger is set by the

ptSetMemoryWarning call.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 37

Arguments: None

Returns: None

Note: The callback must be registered with the ptRegisterCallback routine, passing

in ID ptMemoryWarning

ptNotifyAllMessages

The ptNotifyAllMessages tells the API to issue a callback for any incoming user message,

instead of just alert level messages. The default is to issue a callback only if the user message

is an alert.

Arguments: Enabled (char immediate value)

Returns: status (integer)

Argument/Returns Value

Enabled A char variable containing either Y or N for enable or disable.

Status ptSuccess Successful

 ptErrNotInitialised API is not initialised.

ptPriceLinkStateChange (callback)

The ptPriceLinkStateChange callback identifies that the IP socket has undergone a state

change. The old and new states are returned in the data parameter. This routine is provided

by the application to be executed by the API whenever the IP link to the Price Feed alters

state.

Arguments: Data (struct writeable, by reference)

Returns: none

Argument/Returns Value

Data Address of a structure of type LinkStateStruct. The application routine

will receive the link status details in this parameter. LinkStateStruct is

defined as:

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 38

Argument/Returns Value

LinkStateStruct read-only, by reference

OldState: byte

NewState byte

The link states can be one of:

ptLinkOpened - socket created

ptLinkConnecting - socket connecting to remote socket

ptLinkConnected - socket connected to remote socket

ptLinkClosed - socket connection has

 been closed

ptLinkInvalid - unknown or unexpected state

The routine fires when the API has completed a successful logon via ptLogon. No attempt to

connect to the Price Server will be made until a successful log on has been achieved.

Note: This callback routine must be registered with the ptRegisterLinkStateCallback

routine.

ptPurgeCompleted (callback)

The ptPurgeCompleted callback fires when all the expired items under a particular exchange

have been purged from memory. ptPurge must be called before purging is initiated.

Arguments: ExchangeData (struct writeable, by reference)

Returns: none

Argument/Returns Value

ExchangeData Address of a structure of type ExchangeUpdStruct containing details

about the exchange which has had all its expired contract dates, orders

and fills purged from memory:

ExchangeUpdStruct read-only, by reference

ExchangeName: string[11]

Note: The routine must be registered with the ptRegisterExchangeCallback routine.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 39

ptReady

Indicates that the application has finished setting up the API parameters. This will trigger the

API to connect to the Host which in turn will cause the callback ptHostLinkStateChange to

fire as the link becomes connected.

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess API has commenced processing.

 ptErrCallbackNotSet One of the required callbacks has not been

 provided to the API.

 ptErrNotInitialised API has not been initialised with ptInitialise.

A success code from this function does not indicate that the API has connected to the Host.

To determine whether the API has connected, examine the data returned by the

ptHostLinkStateChange callback.

Note: The link to the Price Server is not made at this stage. The connection will not

be attempted until ptLogon has successfully logged on to the host.

ptRegisterAtBestCallback

The ptRegisterAtBestCallback routine registers a contract callback routine to notify the User

of At Best price changes. The callback procedure provided by the application must accept

one parameter – the address of the structure containing the data.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallBackID Integer to identify the callback routine being provided. Must be

ptAtBestUpdate.

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type AtBestUpdStruct, passed by reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 40

Argument/Returns Value

This structure contains the exchange name, contract name and contract

date for the contract that has had a change in At Best Price.

AtBestUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitialised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallbackID value was not

 recognised as a valid contract

 callback.

Some exchanges supply At Best price details, showing individual firm volume at the best bid

or offer. Most exchanges do not support At Best price data (i.e. individual firm volume). The

Sydney Futures Exchange is one exchange that does.

The callback provides the exchange name, contract name and contract date for the contract

that has had an At Best price change. The application should then call ptGetContractAtBest

to obtain the new At Best details (firm, volume, bid or offer) and ptGetContractAtBestPrices

to obtain the actual At Best prices.

ptRegisterBlankPriceCallback

The ptRegisterBlankPriceCallback routine registers a callback routine to notify users of a

price blanking message received by the exchange. The callback procedure provided by the

application must accept one parameter – the address of the structure containing the data.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallBackID Integer to identify the callback routine being provided. Must be

ptBlankPrice.

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type BlankPriceStruct, passed by reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 41

Argument/Returns Value

BlankPriceStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallbackID value was not

 recognised as a valid contract

 callback.

The callback provides the exchange name, an optional contract name and optional contract

date for the expiries to be blanked. If all the expiries for a given Exchange or Contract are to

have their prices blanked, only the Exchange or Exchange and Contract details will be

passed.

ptRegisterCallback

The ptRegisterCallback routine registers a general callback routine, one that does not return

data. In these cases, the application may need to make a further call to the API to obtain the

data for the callback.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use one of

 ptDataDLComplete

 ptLogonStatus

 ptForcedLogout

 ptMemoryWarning

CBackProc Address of a procedure that the API will execute. The procedure must

accept no parameters.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 42

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallbackID value was not

 recognised as a valid contract

 callback.

This routine is used to register the following callbacks:

CallBack Description

ptDataDLComplete Reference data download from Host has completed.

ptLogonStatus Host has returned a logon status in response to a ptLogon call.

ptOrderBookReset The OrderBook has been reset, and the client needs to clear down the

orders and fills prior to receipt of a number of additional items.

ptMemoryWarning System memory used has risen above the limit.

ptRegisterCommodityCallback

The ptRegisterCommodityCallback routine registers a callback routine to notify users of a

new commodity received by the API after the logon is complete or if an existing commodity

has been updated.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use one of

ptDataDLComplete, ptLogonStatus ,ptForcedLogout or

ptMemoryWarning

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type CommodityUpdStruct, passed by

reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 43

Argument/Returns Value

CommodityUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Note: ptGetCommodityByName needs to be called to get all of the details about the

commodity being added or updated.

ptRegisterConStatusCallback

The ptRegisterConStatusCallback routine registers the callback routine for notifying of a

change in connectivity status.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use one of

ptDataDLComplete, ptLogonStatus ,ptForcedLogout or

ptMemoryWarning

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type ConnectivityStatusUpdStruct, passed

by reference.

ConnectivityStatusUpdStruct read-only, by reference

DeviceLabel string[37]

DeviceType string[4]

Status string[4]

Severity string[4]

DeviceName string[21]

Commentary string[256]

ExchangeID string[21]

Owner string[21]

TimeStamp string[15]

SystemID string[11]

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 44

Argument/Returns Value

See below for field descriptions

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallbackID value was not

 recognised as a valid link state

 callback.

ConnectivityStatusUpdStruct

Field Description

DeviceLabel Text label representing the specific

device

DeviceType 1 – Exchange

2 – ORE

3 – TAS

4 – ESA

5 – MD

6 – SARA

7 – Client

8 – BOF

9 – TSF

Status 1 – Running

2 – Closed

3 – Initialising

4 – Offline

Severity 1 – Information

2 – Warning

3 – Attention

4 – Urgent

5 – Fatal

DeviceName Name of the specific device in question.

Commentary Free text, “display friendly” version of the

status where appropriate.

ExchangeID Exchange ID of the device.

Owner Originator of the status message

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 45

Field Description

TimeStamp Date and time that the status message

was reported.

SystemID Globally unique ID identifying the system

in which the status message has occured.

ptRegisterContractCallback

The ptRegisterContractCallback routine registers a contract callback routine to notify

addition or deletion of contracts.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Register one of the following callbacks:

 ptContractAdded A new contract has been added.

 ptContractDeleted An existing contract has been

 deleted.

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type ContractUpdStruct, passed by

reference.

This structure contains the exchange name, contract name and contract

date for the contract that was added or removed

ContractUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 46

ptRegisterDOMCallback

The ptRegisterDOMCallback routine registers a contract callback routine to notify the receipt

of a Depth Of Market (DOM) message from the price sever

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptDOMUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type DOMUpdStruct, passed by reference.

This structure contains the exchange name, contract name and contract

date referred to by the DOM message

DOMUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterExchangeCallback

The ptRegisterExchangeCallback routine registers a callback routine to notify users of an

update to an existing exchange.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 47

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptExchangeUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type ExchangeUpdStruct, passed by

reference.

This structure contains the exchange name.

ExchangeUpdStruct read-only, by reference

ExchangeName: string[11]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Note: ptGetExchangeByName must be called to acquire the full details of the

exchange.

ptRegisterExchangeRateCallback

The ptRegisterExchangeRateCallback routine registers the callback routine for notification

of a change in exchange rate

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptExchangeRate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type ExchangeRateUpdStruct, passed by

reference.

This structure contains the currency.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 48

Argument/Returns Value

ExchangeRateUpdStruct read-only, by reference

Currency: string[11]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterFillCallback

The ptRegisterFillCallback routine registers the callback routine for notification of a fill.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use ptFill

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type FillUpdStruct, passed by reference.

This structure contains the order and fill identifiers

FillUpdStruct read-only, by reference

OrderID: string[11]

FillID: string[71]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

The callback provides the order ID and the Fill ID for the fill that was received.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 49

ptRegisterGenericPriceCallback

The ptRegisterGenericPriceCallback routine registers the callback routine for notification of

receipt of a generic price type.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptGenericPriceUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type GenericPriceStruct, passed by

reference.

This structure contains the price details

GenericPriceStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

PriceType: integer

BuyOrSell char

See below for price types

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Price Types

Type Value Description

Pats Settlement Price 7 The original settlement price that tries to cover

all bases

Limit Upper 21 The upper limit price for the market

Limit Lower 22 The lower limit price for the market

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 50

Type Value Description

Tick Distance 23 the number of ticks away from the reference

price that can be traded

Yesterdays Settlement

Price

24 The settlement price of yesterdays trading

session - used to calculate the change in day

price

Todays Settlement

Price

25 the settlement price for todays session usually

sent out toward the end of the trading session

Int Minute Marker 31 minute marker used during sessions in certain

markets to indicate what the final minute

marker price will be.

Final Minute Marker 32 The final MM price used to indicate the price

everyone will trade at for that market

EFP trade volume 33 a volume traded off the market

EFS trade volume 34 a volume traded off the market

Block trade volume 35 a volume traded off the market

EFP cumulative volume 36 The total volume traded off the market

EFS cumulative volume 37 a volume traded off the market

Block cumulative

volume

38 a volume traded off the market

Note: The price can be retrieved by calling ptGetGenericPrice.

ptRegisterLinkStateCallback

The ptRegisterLinkStateCallback routine registers the callback routine for notification of a

link state change.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Register one of the following callbacks:

 ptHostLinkStateChange Host server state change.

 ptPriceLinkStateChange Price server state change.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 51

Argument/Returns Value

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type LinkStateStruct, passed by reference.

This structure contains the currency.

LinkStateStruct read-only, by reference

OldState: byte

NewState byte

The link states can be one of:

 ptLinkOpened - socket created

 ptLinkConnecting - socket connecting to remote socket

 ptLinkConnected - socket connected to remote socket

 ptLinkClosed - socket connection has been closed

 ptLinkInvalid - unknown or unexpected state

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterMsgCallback

ptRegisterMsgCallback registers the callback routine for notification of user messages

(alerts).

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use ptMessage

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type string[11] passed by reference.

MsgID : string [11] read-only, by reference

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 52

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterAmendFailureCallback

The ptRegisterAmendFailureCallback registers the callback routine for notifications of an

order amend sending failure within a period of time.

Note: This does not necessarily mean the order was not received by the exchange –

only that the API has not received notification of the order changing state

from sent within the time specified by pOrderCancelFailureDelay.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptOrderAmendFailure

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderUpdStruct, passed by reference.

OrderUpdStruct read-only, by reference

OrderID: string[11]

OldOrderID: string[11]

OrderStatus: byte

OFSeqNumber: integer

OrderTypeID: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 53

ptRegisterOrderCallback

The ptRegisterOrderCallback routine registers the callback routine for notification of an

order change.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use ptOrder

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderUpdStruct, passed by reference.

OrderUpdStruct read-only, by reference

OrderID: string[11]

OldOrderID: string[11]

OrderStatus: byte

OFSeqNumber: integer

OrderTypeID: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

The callback provides the order ID for the order that changed, and its previous order ID,

before it changed. Additionally there is an OFSeqNumber which is the index of the order

update for that particular Order ID, base 1. The application must then call ptGetOrderByID to

obtain the new details.

ptRegisterOrderQueuedFailureCallback

The ptRegisterOrderQueuedFailureCallback registers the callback routine for notification of

an order sending failure within a period of time.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 54

Note: This does not necessarily mean the order was not received by the exchange –

only that the API has not received notification of the order changing state

from sent within the time specified by pSetOrderQueuedFailureDelay.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptOrderQueuedFailure

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderUpdStruct, passed by reference.

OrderUpdStruct read-only, by reference

OrderID: string[11]

OldOrderID: string[11]

OrderStatus: byte

OFSeqNumber: integer

OrderTypeID: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterOrderSentFailureCallback

The ptRegisterOrderSentFailureCallback registers the callback routine for notification of an

order sending failure within a period of time.

Note: This does not necessarily mean the order was not received by the exchange –

only that the API has not received notification of the order changing state

from sent within the time specified by pSetOrderSentFailureDelay.

Arguments: CallackID (integer read-only, immediate value)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 55

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptOrderSentFailure

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderUpdStruct, passed by reference.

OrderUpdStruct read-only, by reference

OrderID: string[11]

OldOrderID: string[11]

OrderStatus: byte

OFSeqNumber: integer

OrderTypeID: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterOrderCancelFailureCallback

The ptRegisterOrderCancelFailureCallbackroutine registers the callback routine for

notification of an order cancellation failure within a period of time.

Note: This does not necessarily mean the order was not received by the exchange –

only that the API has not received notification of the order changing state

from sent within the time specified by pSetOrderCancelFailureDelay.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 56

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptOrderCancelFailure

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderUpdStruct, passed by reference.

OrderUpdStruct read-only, by reference

OrderID: string[11]

OldOrderID: string[11]

OrderStatus: byte

OFSeqNumber: integer

OrderTypeID: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterOrderTypeUpdateCallback

The ptRegisterOrderTypeCallback routine registers the callback routine for notification of an

ordertype change.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptOrderTypeUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type OrderTypeStruct, passed by

reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 57

Argument/Returns Value

OrderTypeStruct read-only, by reference

OrderType: string[11]

Exchange: string[11]

OrderTypeId: integer

NumPricesReqd: byte

NumVolumesReqd: byte

NumDatesReqd: byte

AutoCreated: char

TimeTriggered: char

RealSynthetic: char

GTCFlag: char

TicketType: string[3]

PatsOrderType: char

AmendOTCount: integer

AlgoXML: string[51]

Please refer to ptGetOrderType for description of fields

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterPriceCallback

The ptRegisterPriceCallback routine registers the callback routine for notification of receipt

of a price change.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptPriceUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type PriceUpdStruct, passed by reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 58

Argument/Returns Value

This structure contains the price details

PriceUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Note: The callback provides the exchange name, contract name and contract date

of the price that has changed. The application must then call

ptGetPriceForContract to obtain the new price details.

ptRegisterSettlementCallback

The ptRegisterSettlementCallback registers the callback routine that will fire whenever a

settlement price is received by the API.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptSettlementCallback

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type SettlementPriceStruct, passed by

reference.

This structure contains the exchange name, contract name and date for

the price that changed, along with the new Settlement Price type, price

received and the time & date the price was received.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 59

Argument/Returns Value

SettlementPriceStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

SettlementType: integer

Price: string[21]

Time: string[7]

Date: string[9]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Note: There is no need to call ptGetPriceForContract, as the last two parameters

describe the Settlement Price type received, and the value.

ptRegisterSubscriberDepthCallback

The ptRegisterSubscriberDepthCallback registers the callback routine that will fire whenever

subscriber depth of market data is updated.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptSubscriberDepthUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type SubscriberDepthUpdStruct, passed

by reference.

This structure contains the exchange name, contract name and date for

the data that changed.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 60

Argument/Returns Value

SubscriberDepthUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Subscriber depth is related to At Best prices, and supplies a firm’s volume available at a price

(in this case, prices other than best bid and best offer). Most exchanges do not supply this

information in their trading price feed. One exchange that does is the Sydney Futures

Exchange.

Note: The callback provides the exchange name, contract name and contract date

for the contract that has had a Subscriber Depth price change. The

application should then call ptGetContractSubscriberDepth to obtain the new

Subscriber Depth details (firm, price volume, bid or offer).

ptRegisterStatusCallback

The ptRegisterStatusCallback routine registers the callback routine for notifying of a change

in market status of contract dates.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptStatusUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type StatusUpdStruct, passed by

reference.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 61

Argument/Returns Value

This structure contains the exchange name, contract name, date and

the new status.

StatusUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[51]

Status: integer

See below for Status codes.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

Note: Not all state changes apply to all markets. Many markets do not report state

changes through the Patsystems servers at all.

Status Code Description

ptNormal Exchange open

ptStateExDiv Ex-dividend status

ptStateAuction Auction status

ptStateSuspended Suspended status

ptStateClosed Closed status

ptStatePreOpen Pre-Open status

ptStatePreClose Pre-Close status

ptStateFastMarket Fast Market Status

ptRegisterStrategyCreateFailure

The ptRegisterStrategyCreateFailure routine registers the callback routine for notifying of a

failure to create a strategy passed in using ptCreateStrategy.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 62

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptStrategyCreateFailure

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type StrategyCreateFailureStruct,

passed by reference.

StrategyCreateFailureStruct read-only, by reference

Username: string[11]

Exchange: string[11]

Contract: string[11]

ContractDate: string[51]

Text: string[61]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterStrategyCreateSuccess

The ptRegisterStrategyCreateSuccess routine registers the callback routine for notifying of a

successful creation of a strategy passed in using ptCreateStrategy.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 63

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptStrategyCreateSuccess

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type StrategyCreateSuccessStruct,

passed by reference.

StrategyCreateSuccessStruct read-only, by reference

Username: string[11]

Exchange: string[11]

Contract: string[11]

ReqContractDate: string[51]

GenContractdate string[51]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptRegisterTickerCallback

The ptRegisterTickerCallback routine registers the callback routine for notification of a

change in contract price. The callback fires whenever a new price is received for any

contract.

The price ticker does not provide a fully functioning ticker. However, when connected to a

full rate market data distrubutor it improves the reliability and accurate transmission of best

bid/offer and last traded information.

Note: Be aware, however, that this is not enough to get all price updates from the

available contract. A price subscription should also be performed, usually by

calling the ptSubscribePrice function.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 64

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptTickerUpdate

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type TickerUpdStruct, passed by reference.

TickerUpdStruct

Exchange: string[11]

Contract: string[11]

ContractDate: string[51]

BidPrice: string[21]

BidVolume: integer

OfferPrice: string[21]

OfferVolume: integer

LastPrice: string[21]

LastVolume:: integer

Bid: char

Offer: char

Last: char

See below for description of fields

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

The callback returns the contract that the price applies to, the new price and also a flag

indicating what was updated. This call provides only best bid, best offer and last traded

prices along with their associated volumes. The call differs from the ptPriceUpdate callback

in that the price data is supplied with the callback, rather than prompting your application

to call the API to supply a price. This makes it a suitable mechanism for providing ticker

information such as time and sales.

TickerUpdStruct

Field Description

ExchangeName Exchange name.

ContractName Contract name.

ContractDate Contract date.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 65

Field Description

BidPrice The Bid price. Converts to a floating point number under

the rules of the contract. Please be aware of fractional

based pricing on some CME/CBOT products.

BidVolume The Bid volume.

OfferPrice The Offer price. Converts to a floating point number

under the rules of the contract. Please be aware of

fractional based pricing on some CME/CBOT products.

OfferVolume The Offer volume.

LastPrice The Last price. Converts to a floating point number

under the rules of the contract. Please be aware of

fractional based pricing on some CME/CBOT products.

LastVolume The Last volume.

Bid Y or N, to indicate if this message conatins an update to

the bid price or bid volume.

Offer Y or N, to indicate if this message conatins an update to

the offer price or offer volume.

Last Y or N, to indicate if this message conatins an update to

the last price or last volume.

ptRegisterTraderAddedCallback

The ptRegisterTraderAddedCallback routine registers a callback routine to notify users of a

new trader received by the API after the logon is complete or if an existing trader has been

updated.

Arguments: CallackID (integer read-only, immediate value)

 CBackProc (address read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

CallbackID Integer to identify the callback routine being provided. Use

ptTraderAdded

CBackProc Address of a procedure that the API will execute. The procedure must

accept one parameter, of type TraderAcctStruct, passed by

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 66

Argument/Returns Value

reference.

TraderAcctStruct read-only, by reference

TraderAccount: string[21]

BackOfficeID: string[21]

Tradeable: char

LossLimit: integer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownCallback The CallBackID value was not

 recognised as a valid callback.

ptSetClientPath

The ptSetClientPath routine sets the path used by the API to read and write files. By default,

the path of the executable using the API is used.

Arguments: Path (string read-only, by reference)

Returns: None

Argument/Returns Value

Path The parameter used to specify the client path should be a null

terminated string, and should end with a backslash (“\ “) character.

Warning: This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid path is

specified.

ptSetEncryptionCode

The ptSetEncryptionCode routine requests the API to encrypt messages sent to and from the

Host Transaction Server.

Arguments: Ecode (char read-only, immediate value)

Returns: None

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 67

Argument/Returns Value

Ecode A single character from ‘A’ to ‘E’

To enable encryption of messages, use this routine prior to call ptReady.

Currently, the parameter used to specify the encryption code has a valid range of A to E,

which is used internally to the API to determine the encryption method. Leaving this value

blank will result in data being transmitted un-encrypted. However, it is not transmitted in

free text, as the messages undergo a compression algorithm.

The recommended setting for this function is A.

Warning: This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid code is

specified.

ptSetHostAddress

Sets the Host IP address and socket (aka port) to the values specified in the null terminated

string parameters. The IP Address string is expected to be the standard IP format of

number.number.number.number. Do not insert leading zeros into the string. It is also

possible to enter a host name if your machine has access to a domain name server that can

resolve it.

The IP Socket should be in the format of nnnn, although this is not validated

Arguments: IPaddress (string read-only, by reference)

 IPsocket (string read-only, by reference)

Returns: status (integer)

Argument/Returns Value

IPaddress The address of a null terminated string containing the ASCII

representation of the IP address including periods.

IPsocket The address of a null terminated string containing the ASCII

representation of the IP socket.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Bad values will cause the connection to fail when the ptReady call is made and will be

notified by the ptHostLinkStateChange callback. A success status from this call does not

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 68

mean the IP address is either valid or reachable. It indicates only that the API was able to set

the values.

ptSetHostHandshake

The ptSetHostHandshake routine defines the time between handsakes and the length of wait

before the API will assume that connection to the Transaction server has been lost

Arguments: Interval (integer read-only, immediate value)

 TimeOut (integer read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

Interval The interval in seconds by immediate value. A maximum of 900 seconds

is imposed;

TimeOut Pass the length of time to wait before connection is assumed to be lost.

A minimum of twice the interval is imposed. A maximum of 1800

seconds is imposed.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSetHostReconnect

The ptSetHostReconnect routine defines the time that the API will wait before attempting to

reconnect to the Host transaction server. Calling this routine is optional and if not called, a

value of 10 seconds will be used.

Arguments: Interval (integer read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

Interval The interval in seconds by immediate value. A minimum of five seconds

is imposed; a value less than this will be treated as five seconds. There is

no maximum value, although high values will affect the ability of the API

to recover from network problems.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 69

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSetInternetUser

The ptSetInternetUser routine determines if the connection will be made over the internet,

or through a local area network. This will ensure that for internet connections the API will

remain connected, and will only use its internal handshaking to determine the state of

connection to the servers.

By default, it is assumed the user is not an internet user.

Arguments: Enable (char read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

Enable Y or N to enable/disable.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSetMemoryWarning

The ptSetMemoryWarning routine enables code that will monitor the amount of available

memory on the machine and trigger the ptMemoryWarning callback if used memory rises

above the percentage specified by this routine.

Arguments: MemAmount (integer read-only, immediate value)

Returns: none

Argument/Returns Value

MemAmount An integer value containing the percentage of used memory that will

cause the trigger. When total physical memory used becomes greater

than this amount, the callback will fire.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 70

The code will check the available/used memory once per second but will issue the callback

only once per minute. The callback will trigger once per minute until the used memory drops

below the amount specified.

Warning: This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid code is

specified.

ptSetOrderCancelFailureDelay

The ptSetOrderCancelFailureDelay routine sets the delay (in seconds) for the API to wait

before issuing an order cancel failure callback. The minimum value is zero seconds, which

will turn off this functionality, the maximum value is 3600 seconds (that is, one hour).

This value, when used in conjunction with the callback, can be used to alert the user to a

potential loss of connection within the Patsystems servers (e.g. loss of link to exchange).

Arguments: Delay (integer read-only, by reference)

Returns: none

Argument/Returns Value

Delay An integer value containing the number of seconds to wait before

issuing the callback.

Warning: This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid code is

specified.

ptSetOrderQueuedFailureDelay

The ptSetOrderQueuedFailureDelay routine sets the delay (in seconds) for the API to wait

before issuing an order queued failure callback. The minimum value is zero seconds, which

will turn off this functionality, the maximum value is 3600 seconds (that is, one hour).

This value, when used in conjunction with the callback, can be used to alert the user to a

potential loss of connection within the Patsystems servers (e.g. loss of link to exchange).

Arguments: Delay (integer read-only, by reference)

Returns: none

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 71

Argument/Returns Value

Delay An integer value containing the number of seconds to wait before

issuing the callback.

Caution! This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid code is

specified.

ptSetOrderSentFailureDelay

The ptSetOrderSentFailureDelay routine sets the delay (in seconds) for the API to wait before

issuing an order sent failure callback. The minimum value is zero seconds, which will turn off

this functionality, the maximum value is 3600 seconds (that is, one hour).

This value, when used in conjunction with the callback, can be used to alert the user to a

potential loss of connection within the Patsystems servers (e.g. loss of link to exchange).

Arguments: Delay (integer read-only, by reference)

Returns: none

Argument/Returns Value

Delay An integer value containing the number of seconds to wait before

issuing the callback.

Warning: This routine does not return any error codes. Make sure that valid information

is passed to this routine. Unexpected results could occur if an invalid code is

specified.

ptSetPDDSSL

This function has been deprecated.

ptSetPDDSSLCertificateName

This function has been deprecated.

ptSetPDDSSLClientAuthName

This function has been deprecated.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 72

ptSetPriceAddress

Sets the Price Server IP address and socket (aka port) to the values specified in the null

terminated string parameters.

The IP Address string is expected to be in the standard IP format of nnn.nnn.nnn.nnn. Do not

insert leading zeros into the string. The Windows socket library will set an incorrect socket

target address. For example, use “192.168.69.8” not “192.168.069.008”. It is also possible to

enter a host name if your machine has access to a Domain Name Server that can resolve this

address.

The IP Socket is to be in the format of nnnn, although the API performs no validation of it.

Arguments: IPaddress (string read-only, by reference)

 IPsocket (string read-only, by reference)

Returns: status (integer)

Argument/Returns Value

IPaddress The address of a null terminated string containing the ASCII

representation of the IP address including periods.

IPsocket The address of a null terminated string containing the ASCII

representation of the IP socket.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Bad values will cause the connection to fail when the ptReady call is made and will be

notified by the ptHostLinkStateChange callback. A success status from this call does not

mean the IP address is either valid or reachable. It indicates only that the API was able to set

the values.

ptSetPriceAgeCounter

The ptSetPriceAgeCounter routine sets the countdown timer value for prices. This integer

value is the number of seconds before the price counter expires unless there has been an

update. When a price counter expires, the standard price callback ptPriceUpdate is issued.

Examine the AgeCounter value returned by ptGetPriceForContract. If it is zero, then the price

has not been updated for MaxAge seconds.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 73

Arguments: MaxAge (integer read-only, by reference)

Returns: status (integer)

Argument/Returns Value

MaxAge An integer value representing the number of seconds before a price is

considered stale. This must be zero or greater. If it is set to zero, this

effectively disables notification of stale prices. The maximum value is

255 seconds.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Note: All price items maintain the age counter, including intra-day high and lows,

and the opening and closing bids. These price counters may expire as they are

not updated very frequently.

ptSetPriceHandshake

The ptSetPriceReconnect routine defines the time that the API will wait before attempting to

reconnect to the Price Feed server. Calling this routine is optional and if not called, a value of

10 seconds will be used.

Arguments: Interval (integer read-only, immediate value)

 TimeOut (integer read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

Interval The interval in seconds by immediate value. A minimum of five seconds

is imposed. No maximum is set but high values will affect the ability of

the API to recover from network problems.

TimeOut Pass the length of time to wait before connection is assumed to be lost.

A minimum of twice the interval is imposed. A maximum of 1800

seconds is imposed.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 74

ptSetPriceReconnect

The ptSetPriceReconnect routine defines the time that the API will wait before attempting to

reconnect to the Price Feed server. Calling this routine is optional and if not called, a value of

10 seconds will be used.

Arguments: Interval (integer read-only, immediate value)

Returns: status (integer)

Argument/Returns Value

Interval Pass the interval in seconds by immediate value. A minimum of five

seconds is imposed. No maximum is set but high values will affect the

ability of the API to recover from network problems.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSetSSL

The ptSetSSL routine sets whether or not the API will use Secure Socket Layer encryption to

connect to the Host Transaction Server. To enable SSL encryption, the argument should be

passed as ‘Y’. The default mode is to communicate over standard (non-SSL) sockets.

Arguments: Enabled (char read-only, by reference)

Returns: status (integer)

Argument/Returns Value

Enabled Y to enable SSL

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

SSL communication can only be used when connecting to a host transaction server that has

been enabled for SSL, and by connecting to the port enabled for SSL communication. To

determine whether SSL is available to you, contact your connectivity provider.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 75

ptSetSSLCertificateName

The ptSetSSLCertificateName routine sets the name of the SSL certificate to use with the

Secure Socket Layer encryption when connecting to the Host Transaction Server. The

certificate must be registered on the machine as otherwise the certificate may be regarded

as untrusted and the connection will not be established.

Arguments: CertName (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

CertName Certificate Name

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

SSL communication can only be used when connecting to a host transaction server that has

been enabled for SSL, and by connecting to the port enabled for SSL communication. To

determine whether SSL is available to you, contact your connectivity provider. For this

method to affect the socket connection, ptSetSSL must be called to enable Secure Sockets

Layer and the file SSLSocketLib.dll must be placed in the same folder as PATSAPI.dll.

ptSetSSLClientAuthName

The ptSetSSLClientAuthName routine sets the authentication name of the SSL certificate to

use with the Secure Socket Layer encryption when connecting to the Host Transaction

Server. The certificate must be registered on the machine as otherwise the certificate may be

regarded as untrusted and it will not connect.

Arguments: CertName (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

CertName Certificate Name

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 76

This method enables a further level of security above ptSetSSLCertificateName. The client is

issued a distinct Certificate, and when a socket connection is made, the name of the

certificate is passed to the STAS where that value is compared against those in a certificate

store held on the STAS server. The main difference between ptSetSSLClientAuthName and

ptSetSSLCertificateName is the former is validating the certificate held on the client,

whereas the latter is validating against the certificate held on the server.

SSL communication can only be used when connecting to a host transaction server that has

been enabled for SSL, and by connecting to the port enabled for SSL communication. To

determine whether SSL is available to you, contact your connectivity provider. For this

method to affect the socket connection, ptSetSSL and ptSetSSLCertificateName need to

have been called previously.

ptSetSuperTAS

The “SuperTAS” host transaction server must be set as enabled.

Arguments: Enabled (char read-only, by reference)

Returns: status (integer)

Argument/Returns Value

Enabled Y to enable SuperTAS

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSetMDSToken

The PDD can have a token enabled that the API has to pass up for a connection to be

established. If the PDD has the token enabled, and the API does not pass the correct token,

the socket is closed, and no prices are received.

Contact your connectivity provider to establish whether the Market Data Server is using

token authentication or not.

Arguments: MDSToken (string[11] read-only, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 77

Argument/Returns Value

MDSToken Token ID

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptSubscribeBroadcast

The ptSubscribeBroadcast requests the Price Server to supply broadcast messages.

Arguments: ExchangeName (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Exchange name to receive broadcast messages for.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownExchange Unknown exchange name

ptUnsubscribeBroadcast

The ptSubscribeBroadcast requests the Price Server to stop supplying broadcast messages.

Arguments: ExchangeName (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Exchange name to stop receiving broadcast messages for.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnknownExchange Unknown exchange name

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 78

ptSubscribePrice

The ptSubscribePrice routine requests the Price Server to supply a price feed for the

instrument passed to it. Updated prices are notified by the ptPriceUpdate callback.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name to receive

prices for.

ContractName Address of a string variable containing the ASCII name of the

commodity.

ContractDate Address of a string variable containing the ASCII name of the contract

date.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrUnknownContract The Exchange, Contract and Date

 was not recognised.

It is legitimate to subscribe to prices before connecting to the Price Server. On connection or

reconnection to the price feed, the API will automatically subscribe to any prices previously

subscribed to during this session. Price subscriptions will not be preserved after the API is

closed; it is therefore necessary to subscribe to prices each time the API is invoked.

ptUnSubscribePrice

The ptUnsubscribePrice routine requests the Price Server to stop supplying a price feed for

the instrument passed to it. An internal reference count on each contract date keeps track of

how many calls to ptSubscribePrice have been made, and how many calls to

ptUnsubscribePrice have been made. When the number of unsubscribes matches the

number of subscribes, the unsubscribe will occur.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 79

This allows you to easily manage multiple windows with the same price on it. For example,

Window A and Window B both subscribe to the Mini S&P. When Window B is closed and the

price unsubscribed, the price feed will still be delivering the prices needed by Window A.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name to receive

prices for.

ContractName Address of a string variable containing the ASCII name of the

commodity.

ContractDate Address of a string variable containing the ASCII name of the contract

date.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrUnknownContract The Exchange, Contract and Date

 was not recognised.

ptSubscribeToMarket

The ptSubscribeToMarket routine takes in Exchange, Contract, and Contract Date

information and subscribes to RFQ and last price information for the contract or contracts

passed. The ExchangeName is the only required field, ContractName is only required if

ContractDate is specified, and ContractDate is optional.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 80

 ContractDate (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name to receive

prices for.

ContractName Address of a string variable containing the ASCII name of the

commodity.

ContractDate Address of a string variable containing the ASCII name of the contract

date.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrMDSUnavailable API is not currently connected to a

 price feed

 ptErrUnknownExchange The ExchangeName was not

 recognised

 ptErrUnknownCommodity The Contract was not recognised

 ptErrUnknownContract The Date was not recognised.

ptUnsubscribeToMarket

The ptUnsubscribeToMarket routine takes in Exchange, Contract, and Contract Date

information and unsubscribes from RFQ and last price information for the contract or

contracts passed. The ExchangeName is the only required field, ContractName is only

required if ContractDate is specified, and ContractDate is optional.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 81

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name to receive

prices for.

ContractName Address of a string variable containing the ASCII name of the

commodity.

ContractDate Address of a string variable containing the ASCII name of the contract

date.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrMDSUnavailable API is not currently connected to a

 price feed

 ptErrUnknownExchange The ExchangeName was not

 recognised

 ptErrUnknownCommodity The Contract was not recognised

 ptErrUnknownContract The Date was not recognised.

ptSuperTASEnabled

The ptSuperTASEnabled routine returns whether or not the API is enabled to connect to a

Super TAS.

Returns: status (integer)

Argument/Returns Value

Status ptSuccess API is currently connected to a SuperTAS

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn API is not currently logged on to the

 host.

 ptErrNotEnabled API is not currently enabled to

 connect to a SuperTAS.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 82

Reference Data Functions

The following functions read the reference data held by the API.

Reference data is stored internally in the API, in a number of lists that each start at element

zero. Therefore, each type of reference data has at least two routines. One will return the

total number of items in the list and the second will provide indexed access to return the n’th

item from the list.

The API will sometimes provide a simple filtered access to records that can be uniquely

identified. However, for efficiency reasons this is only provided where a single record will be

returned. There are no routines that provide filtered, indexed access where the filter is not

unique, as this would require the API to scan the list each time a record is required. In this

case it is more efficient for the application to scan the entire list and discard records it does

not want.

Reference data is not valid until the API has logged on to the host and the data download is

complete. Before making any calls to obtain reference data, the following operations must

have been completed:

 Attempt log on by calling ptLogon.

 Received log on result notification via ptLogonStatus callback.

 Checked log on status by calling ptGetLogonStatus

 Received ptDataDLComplete callback.

ptCommodityExists

The ptCommodityExists routine indicates whether the specified Commodity Name is known

to the API. Both fields are required. The content of the fields is case sensitive.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name.

ContractName Address of a string variable containing the ASCII name of the

commodity.

Status ptSuccess Successful commodity exists

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 83

Argument/Returns Value

 ptErrFalse Commodity does not exisit

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData No Commodity data in the API

ptCommodityUpdate (callback)

Arguments: CommodityData (struct writeable, by reference)

Returns: none

Argument/Returns Value

CommodityData Address of a structure of type CommodityUpdStruct. The application

routine will receive the commodity updated in this parameter.

CommodityUpdStruct read-only, by reference

ExchangeName: string[11]

CommodityName: string[11]

Note: The routine must be registered with the ptRegisterCommodityCallback

routine.

ptContractAdded (callback)

The ptContractAdded callback fires whenever a new contract is received post logon. The

callback returns information that uniquely identifies the contract that has been added

Arguments: ContractData (struct writeable, by reference)

Returns: None

Argument/Returns Value

ContractData Address of a structure of type ContractUpdStruct. The application

routine will receive the contract updated in this parameter.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 84

Argument/Returns Value

ContractUpdStruct read-only, by reference

ExchangeName: string[11]

CommodityName: string[11]

Contractdate string[51]

Note: The routine must be registered with the ptRegisterContractCallback routine.

ptContractDeleted (callback)

The ptContractDeleted callback fires whenever a contract is removed post logon. The

callback returns information that uniquely identifies the contract that has been removed.

Arguments: ContractData (struct writeable, by reference)

Returns: None

Argument/Returns Value

ContractData Address of a structure of type ContractUpdStruct. The application

routine will receive the contract updated in this parameter.

ContractUpdStruct read-only, by reference

ExchangeName: string[11]

CommodityName: string[11]

Contractdate string[51]

Note: The routine must be registered with the ptRegisterContractCallback routine.

ptContractUpdated (callback)

The ptContractUpdate callback fires whenever a contract’s status or configuration is altered.

The callback returns information that uniquely identifies the contract that has been

removed.

Arguments: ContractData (struct writeable, by reference)

Returns: None

Argument/Returns Value

ContractData Address of a structure of type ContractUpdStruct. The application

routine will receive the contract updated in this parameter.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 85

Argument/Returns Value

ContractUpdStruct read-only, by reference

ExchangeName: string[11]

CommodityName: string[11]

Contractdate string[51]

Note: The routine must be registered with the ptRegisterContractCallback routine.

ptContractExists

The ptContractExists function indicates whether the API has data for a particular contract.

All fields are required and unexpected results may be returned if some fields are not

supplied. The content of the fields is case sensitive.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name.

ContractName Address of a string variable containing the ASCII name of the

commodity.

ContractDate Address of a string variable containing the ASCII name of the contract

date.

Status ptSuccess Successful contract exists

 ptErrFalse Contract does not exisit

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrNoData No Commodity data in the API

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 86

ptCountCommodities

The ptCountCommodities routine returns the total number of commodities known to the

API.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable in which the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptCountContracts

The ptCountContracts routine returns the total number of contracts (a.k.a. “contract dates”)

known to the API at the time. The returned count may be used to control a loop to read all

the contracts.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable in which the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptCountOrderTypes

The ptCountOrderTypes routine returns the total number of order types held in the API. The

returned count may be used to control a loop to read all of the order types.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 87

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable in which the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptCountReportTypes

The ptCountReportTypes routine returns the total number of report types held in the API for

the user. Currently, this should return 5 as there is one report type for each working day of

the week.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable in which the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptCountTraders

The ptCountTraders routine returns the total number of trading accounts for the user.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 88

Argument/Returns Value

Count Address of an integer variable in which the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptExchangeUpdated (callback)

The ptExchangeUpdate callback fires whenever a new exchnage is received post logon, or an

existing exchange’s configuration or status is altered. The callback returns information that

uniquely identifies the Exchange that has been added.

Arguments: ExchangeData (struct writeable, by reference)

Returns: None

Argument/Returns Value

ExchangeData Address of a structure of type ExchangeUpdStruct. The application

routine will receive the contract updated in this parameter.

ExchangeUpdStruct read-only, by reference

ExchangeName: string[11]

Note: The routine must be registered with the ptRegisterExchangeCallback routine.

ptCreateStrategy

The ptCreateStrategy routine can be used to create strategies if they do not already exist on

an exchange. This requires the exchange and the exchange adapter to support creation of

strategies, as is the case with Connect. This routine will send a message through the system

to the exchange adapter, requesting the strategy to be created.

Arguments: StrategyCode (char read-only, immediate)

 NoOfLegs (integer read-only, immediate)

 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 89

 Legs (struct read-only, by reference)

Returns: status (integer)

Argument/Returns Value

StrategyCode A character containing the appropriate strategy code for the strategy, as

listed below.

NumOfLegs An integer containing the number of legs in the strategy

ExchangeName Address of a string variable containing the Exchange name

ContractName Address of a string variable containing the ASCII name of the

commodity.

Legs Address of a structure, type StrategyLegsStruct, containing the legs

making up the strategy. Up to 16 legs can be defined.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrInvalidUnderlying The underlying legs are not valid.

If the strategy can be created, the ptContractAdded callback should fire and the strategy will

appear in the list of contracts. If the strategy cannot be created, either because the exchange

does not support it, or the strategy already exists, the callback will not fire and no new

information will appear in the contract list.

There may be a delay between calling this routine and having the strategy created at the

exchange. In general, the strategy is created within a few seconds

StrategyLegsStruct

 Leg0: StratLegStruct

 Leg1: StratLegStruct

….

 Leg14: StratLegStruct

 Leg15: StratLegStruct

StratLegStruct

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 90

Field Description

ContractType

Char variable containing the contract type of

the underlying leg (for example “F”: for future,

“C” for call or “P” for put)

ContractDate A string[51] variable containing the

Patsystems contract date of the underlying

leg.

Price

A string[11] variable containing the price of

the underlying option leg, if this is

appropriate. Otherwise set it to zero.

Ratio An integer containing the leg ratio.

ContractName A string[11] used to describe the Contract for

the different legs used for Inter Commodity

Strategies.

The following codes may be specified in the StrategyCode parameter for Connect exchanges.

The meaning of these strategies is outside the scope of this document.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 91

Strategy Codes

 ptFUT_CALENDAR,

 ptFUT_BUTTERFLY,

 ptFUT_CONDOR,

 ptFUT_STRIP,

 ptFUT_PACK,

 ptFUT_BUNDLE,

 ptFUT_RTS,

 ptOPT_BUTTERFLY,

 ptOPT_SPREAD,

 ptOPT_CALENDAR_SPREAD,

 ptOPT_DIAG_CALENDAR_SPREAD,

 ptOPT_GUTS,

 ptOPT_RATIO_SPREAD,

 ptOPT_IRON_BUTTERFLY,

 ptOPT_COMBO,

 ptOPT_STRANGLE,

 ptOPT_LADDER,

 ptOPT_STRADDLE_CALENDAR_SPREAD,

 ptOPT_DIAG_STRADDLE_CALENDAR_SPREAD,

 ptOPT_STRADDLE,

 ptOPT_CONDOR,

 ptOPT_BOX,

 ptOPT_SYNTHETIC_CONVERSION_REVERSAL,

 ptOPT_CALL_SPREAD_VS_PUT,

 ptOPT_CALL_SPREAD_VS_CALL,

 ptOPT_STRADDLE_VS_OPTION,

 ptVOL_REVERSAL_CONVERSION,

 ptVOL_OPTION,

 ptVOL_LADDER,

 ptVOL_CALL_SPREAD_VS_PUT,

 ptVOL_SPREAD, ptVOL_COMBO,

 ptVOL_PUT_SPREAD_VS_CALL,

 ptVOL_STRADDLE

The following codes may be specified in the StrategyCode parameter for Eurex MISS

exchanges. The meaning of these strategies is outside the scope of this document.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 92

Strategy Codes

 ptDIV_C_CALENDAR,

 ptDIV_C_SPREAD,

 ptDIV_CONVERSION,

 ptDIV_F_SPREAD,

 ptDIV_P_CALENDAR,

 ptDIV_P_SPREAD,

 ptDIV_STRADDLE,

 ptDIV_STRANGLE.

ptDataDLComplete (callback)

The ptDataDLComplete callback is executed when the reference data has been downloaded

from the Host. This callback should be interpreted to mean that the reference data is now

valid and regular processing can now occur.

Arguments: None

Returns: None

During the normal log on process, a full data download occurs if any one of the following

conditions apply:

 First log on of the day for the user

 Log on for a different user from last time

 Reference data changed on host

 A reset was requested in the ptLogon call

If these conditions are not met, a partial download of reference and trade data will be done.

This partial download will consist of any data that is new or has been updated since the last

logon.

During log on, this callback is executed regardless of whether a full download has occurred.

If no full download occurred, this signals that the existing reference data loaded from disk is

still valid. The process of loading valid reference data during log on is transparent to the

calling application, the only visible difference being a slight delay if data is downloaded from

the Host.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 93

The application should wait for this callback to be issued before commencing to trade.

Note: The callback must be registered with the ptRegisterCallback routine.

ptExchangeExists

The ptExchangeExists function indicates whether a particular exchange (market) is known to

the API. This is a case-sensitive test.

Arguments: ExchangeName (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string variable containing the Exchange name.

Status ptSuccess Successful exchange exists

 ptErrFalse Exchange does not exisit

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrNoData No Commodity data in the API

ptGetCommodity

The ptGetCommodity routine returns a record from the list of commodities known to the

API, indexed by the Index parameter. The data in the list is stored in alphabetical order.

Arguments: Index (integer read-only, immediate value)

 Commodity (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index An integer value representing which record to return. Pass in a value

between 0 and ptCountCommodities – 1 as the data is indexed starting

from zero.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 94

Argument/Returns Value

Commodity Address of a data structure of type CommodityStruct where the API

will write the commodity data. This is a packed structure see below for

format.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrNoData No Commodity data in the API

 ptErrInvalidIndex Value supplied for the index is out of

 the range of data.

CommodityStruct

Field Description

ExchangeName A string[11] variable to contain the exchange

name. This is one of the values returned by

ptGetExchange.

ContractName A string[11] variable to contain the commodity

name. This is the same as the ContractName

returned by ptGetContract.

Currency

A string[11] variable to contain the currency the

commodity is traded in. This value is used to

pass in to ptGetExchangeRate to obtain the

exchange rate to local currency.

Group

A string[11] variable to contain the commodity

group. This value groups similar commodities

together and is provided for display purposes

only.

OnePoint

A string[11] variable to contain the ASCII

representation of the value of one point. This

string must be converted into a floating point

number.

TicksPerPoint An integer variable to contain the number of

ticks in a point.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 95

Field Description

TickSize

A string[11] variable to contain the ASCII

representation of the tick size. This string must

be converted into a floating point number.

GTStatus The global status of this commodity

Two data items are used to determine a valid price format. They are TicksPerPoint and

TickSize and are used as follows:

 TicksPerPoint - The number of individual increments in a whole point for a price.

 TickSize - The minimum movement or price step, always a multiple of

TicksPerPoint.

The following table provides some examples, including fractional priced contracts.

TicksPerPoint TickSize Example

1 1 Whole points: 6500, 6501, 6502

10 0.1 Tenths: 6500.9, 6501.0, 6501.1

10 0.5 Half points: 6500.0, 6500.5, 6501.0

100 0.25 Quarter points: 6500.75, 6501.00, 6501.25

32 0.01 32nds: 102.30, 102.31, 103.00, 103.01

320 0.005 Half 32nds: 102.310, 102.315, 103.000, 103.005

800 0.002 Eigths of a cents

ptGetCommodityByName

The ptGetCommodityByName routine returns the commodity data for a specified

commodity. This routine does not require an index to access the data – it will scan the

known commodities until the specified one is matched and then return the data.

Arguments: ExchangeName (string[11] read-only, by reference)

 CommodityName (string[11] read-only, by reference)

 Commodity (struct writeable, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 96

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name of the

commodity to be queried.

CommodityName Address of a string[11] variable containing the commodity name to be

queried.

Commodity Address of a structure of type CommodityStruct to contain the matching

commodity details. See ptGetCommodity for details of

CommodityStruct.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrNoData No Commodity data in the API

 ptErrUnknownCommodity Commodity name given did not

 match any known records.

ptGetContract

The ptGetContract routine returns contract details from the API, indexed by the Index

parameter. Data is stored in the API sorted by contract expiry date and then by contract

name.

Arguments: Index (integer read-only, immediate value)

 Contract (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index An integer specifying which record to return. Specify a value between 0

and ptCountContracts – 1.

Contract Address of a data structure of type ContractStruct where the API will

write the contract data. This is a packed structure see below for format.

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 97

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 he host.

 ptErrNoData No Commodity data in the API

 ptErrInvalidIndex Value supplied for the index is out of

 the range of data.

ContractStruct

Field Description

ContractName A string[11] variable to contain the name of the

contract. This value matches the

CommodityName value returned by the

ptGetCommodity routine.

ContractDate

A string[51] variable to contain the contract

date. Together with ContractName, this

uniquely identifies the contract to PATS.

ExchangeName A string[11] variable to contain the exchange

that the contract is traded on. This matches one

of the values returned by ptGetExchange.

ExpiryDate A string[9] variable to contain the contract

expiry date in CCYYMMDD format. Data is store

sorted primarily by this field.

LastTradeDate A string[9] variable to contain the date when

trading ceases for the contract in CCYYMMDD

format.

NumberOfLegs Integer. The number of Legs in the Contract.

TicksPerPoint Integer used to describe the Ticks Per Point for

the expiry

TickSize A string[11] variable used to determing the

TickSize for the expiry

Tradable A char used to indicate if the Contract is

available to trade by the user, or if the contract

can only be used as reference data.

GTStatus Integer for the Global Status of a contract

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 98

Field Description

Margin String[21] Margin per lot – used in risk

calculations

ESATemplate Char - Whether the contract is template or not

MarketRef String[17] – exchange reference for the contract

lnExchangeName String[11] – exchange which this contract links

to *

lnContractName String[11] – contract which this contract links to

*

lnContractDate String[51] contract date which this contract

links to *

ExternalID An array of 2 LegStruct structures (defined

below) containing the first exchange specific

contract specification.

* - these fields are currently only used in Settlement and Minute markets

LegStruct is defined as an array of 5 string[11] variables. The struct format is:

LegStruct

Position Description

1

The contract type. A string[11] variable, containing for

example “F” for future, or “EF” for calendar spread.

2 The exchange commodity name. A string[11] variable that

identifies the contract on the exchange, for example ZB, NQ

or FDAX.

3

The exchange maturity code. A string[11] variable that

identifies the maturity on the exchange. For example,

200212. Format varies by exchange.

4 The strike price. A string[11] variable that identifies the

option strike price. Blank for futures.

5 A string[11] variable that further identifies the contract on

the exchange. Varies by exchange and is often blank.

Note: In C or C++ the above indices are zero based, so the first Leg is defined by

ExternalID[0], and the Contract Type of the first Leg will be defined by

ExternalID[0][0].

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 99

Note: For multi leg contracts, i.e. those contracts that have more than 2 legs, it will

be necessary to call ptGetExtendedContract to obtain all exchange specific

contract specifications.

ptGetContractByExternalID

The ptGetContractByExternalID routine returns contract details from the API for a contract

date with the given external ID fields.

Arguments: ContractIn (struct read-only, by reference)

 ContractOut (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ContractIn Address of a structure of type ContractStruct. The values of

ExternalID[1][1], ExternalID[1][2], ExternalID[1][3], ExternalID[2][2] and

ExternalID[2][3] are used to find a matching contract.

ContractOut Address of a structure of type ContractStruct where the API will write

the contract details. See ptGetContract for a description of

ContractStruct.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErInvalidIndex The values specified do not refer to a

 valid contract record.

ptGetContractByName

The ptGetContractByName routine returns contract details from the API for a given

exchange, contract name and date.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 100

 ContractDate (string[51] read-only, by reference)

 Contract (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchaneName A string specifying the name of exchange to which the contract belongs.

ContractName A string specifying the name of the contract.

ContractDate A string specifying the date of the contract.

Contract Address of a structure of type ContractStruct where the API will write

the contract details. See ptGetContract for a description of

ContractStruct.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API does not currently hold any

 contract information.

 ptErInvalidIndex The values specified do not refer to a

 valid contract record.

User Functions

This section covers the routines used to control the user access to the API, such as logging on

and receiving user messages.

ptAcknowledgeUsrMsg

The ptAcknowledgeUsrMsg routine clears a message notified by the ptMessage callback. All

alert messages should be acknowledged in this manner, but failure to acknowledge a

message will not effect the execution of the API. Once a message of any description has been

acknowledged, its status is altered from “Pending” to “Cleared”.

Arguments: MsgID (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 101

Returns: status (integer)

Argument/Returns Value

MsgID Address of a string[11] variable containing the message ID (a.k.a. the

“sequence” number) of the message to be acknowledged. This value is

provided by the ptMessage callback.

Status ptSuccess Successful

 ptErrUnknownMsgID Specified message ID does not refer

 to a valid message.

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData No Commodity data in the API

ptCountUsrMsg

The ptCountUsrMsgs routine returns the total number of messages (alerts and normal

messages) for the user. This value increases throughout the day but is reset after the end of

each day.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable where the API will write the return value.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

ptDOMEnabled

This routine refers to the availability of the Depth of Market (DOM) data, and is superseded

by the ptEnabledFunctionality routine and should not be used.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 102

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrUnexpected An unexpected error occurred.

ptEnabledFunctionality

The ptEnabledFunctionality function returns what functionality and third party software are

enabled for this user. Bits are numbers from least significant (0) to most significant (7). This

routine is designed for use by J-Trader produced by Patsystems and has no meaning to

third-party developers.

Arguments: FunctionalityEnabled (integer writeable, by reference)

 SoftwareEnabled (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

FunctionalityEnabled Address of an integer variable where the API will write the bitmask

listing what functionality has been enabled by the System

Administrator.

SoftwareEnabled Address of an integer variable where the API will write the bitmask

listing what third party software has been enabled by the System

Administrator. The third party application can use the flag to control

how different functionalities are enabled for different users.

Status ptSuccess Successful

 ptErrUnexpected An unexpected error occurred.

FunctionalityEnabled SoftwareEnabled

Bit Meaning Bit Meaning

0 DOM Enabled 0 User defined bit

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 103

FunctionalityEnabled SoftwareEnabled

1 Post Trade Amend Enabled 1 User defined bit

2 MEL Enabled 2 User defined bit

3 Not In Use 3 User defined bit

4 PIG Enabled 4 Not In Use

5 Options Enabled 5 Not In Use

6 Strategy Creation Enabled 6 Not In Use

7 Not In Use 7 Not In Use

For example, if FunctionalityEnabled=23, then DOM, Post-Trade, MEL and PIG are enabled.

 2**0 = 1 (DOM)

 2**1 = 2 (Post-Trade)

 2**2 = 4 (MEL)

 2**4 = 16 (PIG)

 Value = 23

To use the user defined region [0..3] of SoftwareEnabled, you will need to contact

Patsystems and have these codes enabled and attached to a specific user role. This feature

is available for applications that wish to have a closer and more integrated relationship with

Patsystems. Contact apisupport@patsystems.com for more information.

ptGetLogonStatus

The ptGetLogonStatus routine returns the current logon status. This routine is called to

determine whether the user logon was successful and is called in response to the callback

event ptLogonStatus. The normal logon sequence is to call ptLogon to send the logon

message, wait for ptLogonStatus callback to fire and then call ptGetLogonStatus to find the

result of the logon.

Arguments: LogonStatus (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

LogonStatus Address of a data structure of type LogonStatusStruct where the API

will write the last known logon details. The LogonStatusStruct is a

packed structure (see beow).

Status ptSuccess Successful

mailto:apisupport@patsystems.com

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 104

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

LogonStatusStruct

Field Description

Status A byte integer indicating the success or failure of

the logon. See below.

Reason A string[61] field containing the reason for the log

on failure or the forced log off. For a successful

log on it will contain the string “You are now

logged on to PATS”

DefaultTraderAccount A string[21] field containing the user’s default

trader account as set up by the System and Risk

Administrator. For a failed log on, this field is

blank.

ShowReason Char boolean – ‘Y’ if we set the reason field

DOMEnabled Char boolean – ‘Y’ if DOM is enabled

PostTradeAmend Char boolean – ‘Y’ if Post Trade Amend is set

UserName String[256] field containing the username

GTEnabled Char boolean – ‘Y’ if logged into a Global Trading

host

The Status field contains one of:

Status Value Description

ptLogonFailed This value is no longer returned

in the production dll.

ptLogonSucceeded You are now logged on to PATS

ptForcedOut The host forced the application

to be logged off

ptObsoleteVers The API version passed in to

ptInitialise is no longer

supported.

ptWrongEnv The connection is for production

and this is the test environment,

or vice versa

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 105

Status Value Description

ptDatabaseErr The core server could not

attached to the database

ptInvalidUser Username is not set up on the

system

ptLogonRejected The username is correct but the

logon could not be completed

(e.g. wrong password, disabled)

ptInvalidAppl The application or license details

are not correct

ptLoggedOn This username is already logged

on elsewhere

ptInvalidLogonState Unexpected data was returned

from the server

Note: The DEMO DLL may still return you ptLogonFailed under some

circumstances.

ptGetUserMsg

The ptGetUsrMsg routine retrieves a user message (a.k.a. an “alert”) from the list of all

messages received so far today. This list grows during the day and is reset during the end-of-

day processing after trading closes. Data is returned in message ID order, which is the order

in which the messages were created during the day.

Arguments: Index (integer read-only, immediate value)

 UserMsg (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index An integer specifying the record to return. Supply a value between 0 and

ptCountUsrMsgs – 1. There should always be at least one message in the

queue, which is a notification that the end-of-day procedure was

completed.

UserMsg Address of a data structure of type MessageStruct where the API will

write the user message details. (See below).

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 106

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn API has not logged on to the host

 ptErrNoData The API has no user messages

 currently stored

 ptErrInvalidIndex The index value specified does not

 refer to a valid record.

The message status is an indication of whether the user has acknowledged the message. It is

expected that each message will be acknowledged by a call to ptAcknowledgeUsrMsg.

MessageStruct

Field Description

MsgID A string[11] variable to contain the message ID

(a.k.a. the “sequence”) that uniquely identifies

this message.

MsgText A string[501] variable to contain the message text

for display.

IsAlert A character variable indicating whether the

message is an alert or not. One of “Y” or “N”.

Status The current status of this message. One of

 “P” - pending

 “C” - cleared

ptGetUserMsgByID

The ptGetUsrMsgBy ID routine retrieves a particular user message (a.k.a. an “alert”) from the

list of all messages received so far today. This list grows during the day and is reset during

the end-of-day processing. The routine reads directly on the MsgID parameter. This value

matches the value handed to the application by the ptMessage callback.

Arguments: MsgID (string[10] read-only, immediate value)

 UserMsg (struct writeable, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 107

Argument/Returns Value

MsgID Address of a string[10] variable containing the message ID (a.k.a.

the “sequence” number).

UserMsg Address of a data structure of type MessageStruct where the API will

write the user message details. (See ptGetUsrMsg).

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn API has not logged on to the host

 ptErrNoData The API has no user messages

 currently stored

 ptErrInvalidIndex The index value specified does not

 refer to a valid record.

The message status is an indication of whether the user has acknowledged the message. It is

expected that each message will be acknowledged by a call to ptAcknowledgeUsrMsg.

ptLockUpdates

ptLockUpdates queues the updates received from the STAS. This is used to prevent the loss

of data if updates are received and the client collects the session data while more contracts

arrive, therefore the extra information is not collected as the client does not process

callbacks until initialisation is complete.

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptUnLockUpdates

ptUnlockUpdates unloads the queued list of updates and sends the updates to the client.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 108

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptLogOff

LogOff disconnects the user application from the system and saves reference (for example,

contracts, orders) data to disk. This will break the link to the transaction server, free data

structures used in the API and require the application to terminate or otherwise unload

the dll. Further calls to the API will return ptErrNotInitialised.

Arguments: None

Returns: status (integer)

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptNotLoggedOn API has not logged on to the host.

ptLogon

The ptLogon routine sends a log on message to the Host. It does not wait for a reply – once

the message has been sent, the routine exits. The expected outcome of issuing this call is for

the ptLogonStatus callback to be triggered, notifying the application that the log on has

been processed and the result (logged on or failed) is now available. Be aware after receiving

the connected callback you must wait 2-4 seconds before calling ptLogon.

Arguments: LogonDetail (struct read-only, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 109

Argument/Returns Value

LogonDetail Address of a structure of type LogonStruct containing the username

and password for logging on to PATS. See below for LogonStruct.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErBadPassword The value for NewPassword is not

 valid.

During this phase, the Patsystems trading engine compares the username, password,

application ID and license details to determine if the user is allowed to log in from this

source. The license details were specified in the ptInitialise call and are supplied by

Patsystems.

As well as the ptLogonStatus callback executing, if the log on was successful, the

ptDataDLComplete callback fires. This signals that the reference data is now valid and the

API is ready to process orders.

Once the log on is successful and download is completed, the API initiates a connection to

the Price Server using the details set up with ptSetPriceAddress. The success of this

connection will be reported by the callback ptPriceLinkStateChange.

The UserID password can be altered by this call. If the NewPassword field is non-blank, then

the password for the user will be set to this new value if, and only if, the log on is successful.

That is, the value of Password must be correct before the value of NewPassword is used to

change the user’s password on the host. If a password is accidentally changed, the system

and risk administrator can alter any password.

LogonStruct

Field Description

UserID A string[256] variable containing the Patsystems

user name.

Password A string[256] variable containing the password for

the user ID.

NewPassword A string[256] variable containing the new

password for the user ID. If this is left blank or is

set to null, then the password will not be

changed. If set, must be an alphanumeric.

Reset Not Used

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 110

Field Description

Reports To force a report download, set this field to ‘Y’. If

set to ‘N’ then reports are not available through

the ptGetReport funcions.

OTP A string[21] variable containing the One Time

Password (OTP). The One Time Password is

required if this feature is enabled in the

Patsystems Core Server.

ptLogonStatus (callback)

The ptLogonStatus callback executes when the Host has processed the log on request sent

using ptLogon.

Arguments: None

Returns: None

When this callback executes it is necessary to obtain the log on status using the

ptGetLogonStatus function. This signals that the log on was processed and a response is

available, it does not signify that the log on succeeded.

Note: The callback must be registered using the ptRegisterCallback routine.

ptMessage (callback)

The ptMessage callback fires whenever a user alert is received by the API. The user messages

viewed in order provide an audit trail of actions throughout the day. Optionally, this callback

will fire when any user message is received, not just alert messages. This is controlled by the

ptNotifyAllMsgs routine.

Arguments: MsgID (string[11] writeable, by reference)

Returns: None

Argument/Returns Value

MsgID A string[11] variable passed by reference. This will contain the message

ID to pass to ptGetUsrMsgByID.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 111

The callback hands the message identification string (a.k.a. the “sequence” number) to the

calling application. This value can be used in the ptGetUsrMsgByID routine to obtain the

message text.

Each alert is expected to be acknowledged by the application, to set the state to “Cleared”.

This is done using the ptAcknowledgeUsrMsg routine.

Note: The callback must be registered using the ptRegisterMsgCallback routine.

ptPostTradeAmendEnabled

This routine is superseded by the ptEnabledFunctionality routine.

Trading Functions

The following routines are used to manipulate the API for trading and process the results.

ptAddAAOrder

The ptAddAAOrder routine submits a new off market order to the Host. These are used to

report off exchange trades to the Connect hosts and consist of reporting both the buy and

sell side.

Arguments: PrimaryOrder (struct read-only, by reference)

 SecondaryOrder (struct read-only, by reference)

 BidUser (string[11] read-only, by reference)

 OfferUser (string[11] read-only, by reference)

 OrderIDs (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

PrimaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description.

SecondaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description

BidUser A String[11] containing the bid user

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 112

Argument/Returns Value

OfferUser A String[11] containing the offer user

OrderIDs Address of a structure of type CrossingOrderIDs. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

CrossingOrderIDs

Field Description

PrimaryOrderID string[11] – order id returned for primary order

SecondaryOrderID string[11] – order id returned for secondary

order

ptAddBasisOrder

This function is a variant of the ptAddAAOrder routine with different set of arguments.

BasisOrder is a type of BasisOrderStruct

Arguments: PrimaryOrder (struct read-only, by reference)

 SecondaryOrder (struct read-only, by reference)

 BasisOrder (struct read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 113

 OrderIDs (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

PrimaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description.

SecondaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description

BasisOrder Address of a structure of type BasisOrderStruct, see below.

OrderIDs Address of a structure of type CrossingOrderIDs. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

BasisOrderStruct

Field Description

ISINCode string[21] – ISIN code

CashPrice string[21] – cash price

Methodology char - methodology

Reference String[21] – reference text

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 114

CrossingOrderIDs

Field Description

PrimaryOrderID string[11] – order id returned for primary order

SecondaryOrderID string[11] – order id returned for secondary

order

ptAddBlockOrder

The ptAddBlockOrder routine submits a new off market order to the Host. These are used to

report off exchange trades to the Connect hosts and consist of reporting both the buy and

sell side.

Arguments: PrimaryOrder (struct read-only, by reference)

 SecondaryOrder (struct read-only, by reference)

 LegPrices (struct read-only, by reference)

 OrderIDs (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

PrimaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description.

SecondaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd desc tion

LegPrices Address of a structure of type LegPriceStruct, see below.

OrderIDs Address of a structure of type CrossingOrderIDs. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 115

Argument/Returns Value

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

LegPriceStruct

Field Description

Leg0 string[21] – Leg0 price

Leg1

…

Leg14

string[21] – Leg Prices

Leg15 string[21] - Leg15 price

CrossingOrderIDs

Field Description

PrimaryOrderID string[11] – order id returned for primary order

SecondaryOrderID string[11] – order id returned for secondary

order

ptAddCrossingOrder

The ptAddCrossingOrder routine submits a new off market order to the Host. These are used

to report off exchange trades to the Connect hosts and consist of reporting both the buy and

sell side.

Arguments: PrimaryOrder (struct read-only, by reference)

 SecondaryOrder (struct read-only, by reference)

 LegPrices (struct read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 116

 OrderIDs (struct writeable, by reference)

 FAK (char read-only, by reference)

Returns: status (integer)

Argument/Returns Value

PrimaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd description.

SecondaryOrder Address of a structure of type NewOrderStruct containing the order

details. Refer to ptAddOrder for NewOrderAdd desc tion

LegPrices Address of a structure of type LegPriceStruct, see below.

OrderIDs Address of a structure of type CrossingOrderIDs. See below.

FAK char default ‘L’ (Leave).

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

This function is a variant of the ptAddAAOrder routine with different set of arguments. The

FAK parameter added as part of the 6.3 CME Eurodollar functionality allows the user to

determine if the crossing order placed on the exchange uses “Fill & Kill” behaviour. If the

exchange supports this functionality, an order placed with the default ‘L’ setting (instructing

the exchange to ‘Leave’ the unfilled leg in the market) in the FAK field will leave an unfilled

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 117

leg on the exchange to be filled at a later time. If the FAK field is set to ‘K’, the unfilled leg of

the cross will be pulled from the market as soon as the opposing leg is filled.

LegPriceStruct

Field Description

Leg0 string[21] – Leg0 price

Leg1

…

Leg14

string[21] – Leg Prices

Leg15 string[21] - Leg15 price

CrossingOrderIDs

Field Description

PrimaryOrderID string[11] – order id returned for primary order

SecondaryOrderID string[11] – order id returned for secondary

order

ptAddOrder

The ptAddOrder routine submits a new order to the Host. The routine does not verify that

the order is sent or accepted by the exchange. This information will be available when the

order state changes as indicated by the ptOrder callback. This function will return an error

code if there is no connection to a transaction server.

Arguments: NewOrder (struct read-only, by reference)

 OrderID (sting[11] writeable, by reference)

Returns: status (integer)

Argument/Returns Value

NewOrder Address of a structure of type NewOrderStruct containing the order

details. See below.

OrderID Address of a string[11] variable which will receive the OrderID of the

order.

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 118

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

This function is a variant of the ptAddAAOrder routine with different set of arguments. The

FAK parameter added as part of the 6.3 CME Eurodollar functionality allows the user to

determine if the crossing order placed on the exchange uses “Fill & Kill” behaviour. If the

exchange supports this functionality, an order placed with the default ‘L’ setting (instructing

the exchange to ‘Leave’ the unfilled leg in the market) in the FAK field will leave an unfilled

leg on the exchange to be filled at a later time. If the FAK field is set to ‘K’, the unfilled leg of

the cross will be pulled from the market as soon as the opposing leg is filled.

NewOrderStruct

Field Description

TraderAccount String[21] - variable containing a valid trader

account for the user, as returned by ptGetTrader. May

be set to any string that equates to a valid trader

account for the logged in user.

OrderType String[11] - variable containing the order type. This is

one of the values returned by ptGetOrderType.

ExchangeName String[11] - variable containing the exchange name

for the order. This must be the valid exchange name

for the contract, as returned by ptGetContract.

ContractName String[11] - variable containing the contract name for

the order. This is one of the ContractName values

returned by ptGetContract.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 119

ContractDate String[51] - variable containing the contract date of

the contract, as returned by ptGetContract.

BuyOrSell char - variable either ‘B’ or ‘S’.

Price String[21] - variable containing the target price for

the order. May be any real number. If the order type

does not require a price, as defined by

ptOrderTypePriceRequired then this field must be set

to blank

Price2 String[21]- variable containing a second price if

required. For example, a limit price for a stop/limit

order. Blank if not required.

Lots Integer - variable containing the number of lots for

the order. May be any positive integer.

LinkedOrder String[11] - Not in current use

OpenOrClose Char - variable either ‘O’ or ‘C’ indicating if the Order

is to open or close the traders position.

Xref Integer - An integer variable containing a user

supplied cross-reference number. This cross-

reference is no longer valid if the API is exited.

XrefP Integer - variable containing a user supplied cross

reference number. This cross-reference persists even

if the API is shutdown

GoodTillDate String[9] - variable containing the good till date for

the order as CCYYMMDD, or blank if not required. For

a good till cancelled order, leave this blank.

TriggerNow Char - variable either ‘Y’ or ‘N’ indicating if synthetic

orders should be checked (and triggered if necessary)

immediately rather than awaiting a price update

message.

Reference String[26] - variable containing a user supplied cross

reference similar in function to the XrefP but allowing

text. Should be specified in addition to, not as a

replacement of, XrefP.

ESARef String[51] - variable that can be used to receive

additional information from the exchange adapater.

Used for FIXTGW to receive exchange order number

from CME FX.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 120

Priority Integer - variable to set priority that can be sent

along with the order. Has meaning only for some

exchanges.

TriggerDate String[9] - variable containing a date to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

TriggerTime String[7] - variable containing a time to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

BatchID String[11] - variable used to determine orders

placed/received in batches (for example, wholesale

trade orders).

BatchType String[11] - variable that describes the type of batch

being placed/received (for example, a crossing batch

is type 42)

BatchCount Integer - the number of records in the batch.

BatchStatus String[11] - variable that describes the status of the

batch as it is passed through the system.

ParentID String[11] - variable used to determine the parent

order associated with Aggregate, Customer Request,

and Orders placed as part of Order Management

Integeration (see ptOMIEnabled)

DoneForDay Char - variable used to determine if an Aggregate

Order is completed, and if so whether the order and

associated child orders can be modified. Introduced

as part of the OMI functionality

BigRefField String[256] - reference variable that will be echoed

back on subsequent order responses.

SenderLocationID String[33] – the geographic location of end user (2

character country code). For users based in US and

Canada this should also include state code:

e.g. US, IL (for US, Illinois)

Note: This field is required for orders placed on CME

exchange. Follow this link to get list of codes

ftp.cmegroup.com/fix/coo

Rawprice String[21] - Deprecated field previously used by

FIXTGW field for CME FX

Rawprice2 String[21] - Deprecated field previously used by

FIXTGW field for CME FX

ftp://ftp.cmegroup.com/fix/coo

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 121

ExecutionID String[71] - Deprecated field previously used by

FIXTGW field for CME FX

ClientID String[21] - variable used to determine the client ID of

the order. For CME Globex must be populated using

unique SenderSubID tag 50 value.

APIM Char - value used to describe the APIM value required

by Connect 9.0 and CME exchanges.

 ‘M’ for manually entered orders.

 ‘A’ for automatically entered orders.

APIMUser String[21] - variable used to describe the ITM code

assigned to the third party developer to comply with

Connect 9.0 exchanges.

YDSPAudit String[11] - value used to pass Yesterdays Settlement

Price used to calculate the Near and Far leg prices

when the user is trading an Inter Commodity Spread

(ICS) as part of the Connect 9.0 requirements

ICSNearLegPrice String[11] - The calculated Near Leg Price required

when trading an ICS expiry as part of the Connect 9.0

requirements

ICSFarLegPrice String[11] - The calculated Far Leg Price required

when trading an ICS expiry as part of the Connect 9.0

requirements

MinClipSize Integer - used to determine minimum clip size to be

placed when a ghost order is placed. Can be used

against SyOMS 2.13 and greater

MaxClipSize Integer - used to determine minimum clip size to be

placed when a ghost order is placed. Can be used

against SyOMS 2.13 and greater

Randomise Char - used to determine if the Clip size is to be

randomly generated when the ghost order is working

TicketType String[3] - used to describe the type of ticket used

when the ghost order was placed. Patsystemst GUI

specific

TicketVersion String[4] - used to determine the version of ticket

used when twuihe ghost order was placed.

Patsystemst GUI specific

ExchangeField String[11] - Patsystems specific field: please ignore

BOFID String[21] - Patsystems specific field: please ignore

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 122

Badge String[6] - Patsystems specific field: please ignore

LocalUserName String[11] - Patsystems specific field: please ignore

LocalTrader String[21] - Patsystems specific field: please ignore

LocalBOF String[21] - Patsystems specific field: please ignore

LocalOrderID String[11] - Patsystems specific field: please ignore

LocalExAcct String[11] - Patsystems specific field: please ignore

RoutingID1 String[11] - Patsystems specific field: please ignore

RoutingID2 String[11] - Patsystems specific field: please ignore

Inactive Char -

clientIdShortCode String[21] – exchange short code

clientIdType Char – valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

commodityDerInd Char - valid values:

Y – Yes

N - No

DEA Char – valid values:

Y – Yes

N - No

executionDecision String[21] – exchange short code

executionDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

investmentDecision String[21] – exchange short code

investmentDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

liquidityProvider Char - valid values:

Y – Yes

N - No

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 123

shortSelling Char - valid values:

0 – <empty>

1 – SESH – no exception

2 – SESX – with exception

3 – SELL – no short sale

4 – UNDI – not available

tradingCapacity Char - valid values:

1– DEAL

2 – MTCH

3 - AOTC

ancillaryTrading Char - valid values:

Y – Yes

N - No

ptAddOrderEx

The normal call (ptAddOrder) attaches the logon username to the trade. The ptAddOrdEx

function call may be used to attach a different username to the order, for example so that a

multi-user gateway application can set usernames for receiving exchange member rates on

the eCBOT and CME exchanges. By specifying ptAddOrderEx and giving a different username,

the exchange gateways will pick up appropriate attributes to receive the correct exchange

member/non-member rates.

Arguments: NewOrder (struct read-only, by reference)

 OrderID (string[11] writeable, by reference)

 UserName (string[11] writeable, by reference)

Returns: status (integer)

Argument/Returns Value

NewOrder Address of a structure of type NewOrderStruct containing the order

details. See ptAddOrder.

OrderID Address of a string[11] variable which will receive the OrderID of the

order.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 124

Argument/Returns Value

Username A string[11] variable to receive the username to attach to the trade.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

The function call has some restrictions placed on it. This function call must be used under

the following restrictions. Failure to adhere to these restrictions may result in unexpected

behavior or revocation of your license.

 The username must exist on the remote server

 The application name and license details must match the logon user

 The account for the trade must be a valid account for the attached user

ptAddAlgoOrder

The ptAddAlgoOrder routine submits a new order to the Host. It does exactly the same as

ptAddOrder adding extra XML information to be used by the ALGO server. Algo Buff is defined

as an array of Char.

Arguments: NewOrder (struct read-only, by reference)

 BuffSize (integer read-only, by reference)

 AlgoBuff (struct read-only, by reference)

 OrderID (string[11] writeable, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 125

Returns: status (integer)

Argument/Returns Value

NewOrder Address of a structure of type NewOrderStruct containing the order

details. See ptAddOrder.

BuffSize Size of the AlgoBuff

AlgoBuff Array of char containing the Algo XML.

OrderID Address of a string[11] variable which will receive the OrderID of the

order.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

 ptErrInvalidAlgoXML This Algo Order contains incorrect

 XML information

ptAddProtectionOrder

This method is used to place ‘Bracket’ orders.

Arguments: NewOrder (struct read-only, by reference)

 ProtectionOrder (struct read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 126

 OrderID (string[11] writeable, by reference)

Returns: status (integer)

Argument/Returns Value

NewOrder Address of a structure of type NewOrderStruct containing the order

details. See ptAddOrder.

ProtectionOrder ProtectionStruc (see below) - Contains the additional information

required by SyOMS to place the orders to protect the position taken by

the original order (defined in NewOrderStruct).

OrderID Address of a string[11] variable which will receive the OrderID of the

order.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrPriceRequired Order type required a price and one

 was not provided.

 ptErrUnknownAccount Trader account does not match

 known trader.

 ptErrUnknownOrderType Order type is not known.

 ptErrUnknownContract Contract name/ date does not refer

 to a valid contract.

 ptErrTASUnavailable Transaction server is not connected.

 ptErrMDSUnavailable PDD is not connected.

ProtectionStruc

Field Description

Pr1_Price A String[20]. The price difference between the first fill

for the placed order, and the price of the first level

protection order placed by SyOMS

Pr1_Volume Integer: The total volume to be placed by SyOMS at

the first protection level as the placed order is filled

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 127

Pr2_Price A String[21]. The price difference between the first fill

for the placed order, and the price of the second level

protection order placed by SyOMS

Pr2_Volume Integer: The total volume to be placed by SyOMS at

the second protection level as the placed order is

filled.

Pr3_Price A String[21]. The price difference between the first fill

for the placed order, and the price of the first level

protection order placed by SyOMS

Pr3_Volume Integer. The total volume to be placed by SyOMS at

the third protection level as the placed order is filled.

St_Type A String[11]. The type of synthetic Stop order to be

managed by SyOMS as the placed order is filled

St_Price A String[21]. The price difference between the first fill

for the placed order, and the price of the synthetic

Stop order placed by SyOMS

St_Step_1 A String[21]. Indicates the minimum price the market

must move before the synthetic Trailing Stop (if

used) moves

St_Step_2 A String[21]. The change in price the Trailing Stop (if

used) moves when the price has moved greater than

the number of steps specified in St_Step_1

Pr1_Price A String[20]. The price difference between the first fill

for the placed order, and the price of the first level

protection order placed by SyOMS

ptAmendOrder

The ptAmendOrder routine changes the details for an order already accepted by the system.

The order must be in one of the following states: ptWorking, ptPartFilled, ptHeldOrder,

ptFilled or ptBalCancelled. If the order is ptWorking, ptPartFilled or ptHeldOrder then all fields

must be specified in the NewDetails structure. If the order is ptFilled or ptBalCancelled then

only the Trader field is valid for change and the other fields are ignored.

Arguments: OrderID (string[11] writeable, by reference)

 NewDetails (struct read-only, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 128

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems ID of the

order to change. This value is returned to the application by the ptOrder

callback.

NewDetails Address of a structure of type AmendOrderStruct, containing the

new details for the order. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData API does not currently hold any order

 information.

 ptErrAmendDisabled Amend is not supported by the

 exchange. Use cancel/add.

 ptErrInvalidState Order may not be amended at this

 time.

 ptErrInvalidPrice New price not valid.

 ptErrInvalidVolume New volume not valid.

 ptErrUnknownAccount Contract name/ date does not refer

 to a valid contract.

 ptErInvalidAmendOrderType Order cannot be amended to this

 order type.

OrderAmendStruct

Field Description

Price A string[21] variable containing the new target price

for the order as a text string. May be set to any real

number. If the order does not require a price, this

must be set to blank.

Price2 A string[21] variable containing a second price if

required. For example, a limit price for a stop/limit

order. Blank if not required.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 129

Lots An integer variable containing the new number of

lots for the order. May be set to any positive integer.

LinkedOrder A string[11] variable containing the Patsystems Order

ID of the order linked to this order.

OpenOrClose A char variable either ‘O’ or ‘C’ indicating if the Order

is to open or close the traders position.

Trader A string[21] variable containing the new trader

account for the order. May be any non-blank text

string they equates to a valid trader for the logged on

user.

Reference A string[26] variable containing a user supplied cross

reference similar in function to the XrefP but allowing

text. Should be specified in addition to, not as a

replacement of, XrefP. XrefP is treated as fixed for the

life of the order, Reference may be altered.

Priority An integer variable to set priority that can be sent

along with the order. Has meaning only for some

exchanges.

TriggerDate A string[9] variable containing a date to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

TriggerTime A string[7] variable containing a time to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

BatchID A string[11] variable Used to determine orders

placed/received in batches (for example, wholesale

trade orders).

BatchType A string[11] variable Describes the type of batch

being placed/received (for example, a crossing batch

has the batch type 42)

BatchCount An integer describing the number of records in the

batch.

BatchStatus A string[11] variable describes the status of the batch

as it is passed through the system.

ParentID A string[11] variable used to determine the parent

order associated with Aggregate, Customer Request,

and Orders (see ptOMIEnabled)

DoneForDay A char variable used to determine if an Aggregate

Order is completed, and if so whether the order and

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 130

associated child orders can be modified. Introduced

as part of the OMI functionality

BigRefField A string[256] reference variable that will be echoed

back on subsequent order responses.

SenderLocationID A string[33]. It is geographic location of end user (2

character country code). For users based in US and

Canada this should also include state code:

e.g. US, IL (for US, Illinois)

Note: This field is required for orders placed on CME

exchange. Follow this link to get list of codes

ftp.cmegroup.com/fix/coo

Rawprice A string[21]. Deprecated field previously used by

FIXTGW field for CME FX.

 Rawprice2 A string[21]. Deprecated field previously used by

FIXTGW field for CME FX.

ExecutionID A string[71]. Deprecated field previously used by

FIXTGW field for CME FX.

ClientID A string[21] variable used to determine the client ID

of the order. Can use set CME’s SenderSubId tag 50

value instead if username.

ESARef A string[51]. ESA reference.

YDSPAudit A string[11] value used to pass Yesterdays Settlement

Price used to calculate the Near and Far leg prices

when the user is trading an Inter Commodity Spread

(ICS) as part of the Connect 9.0 requirements

ICSNearLegPrice A string[11]. The calculated Near Leg Price required

when trading an ICS expiry as part of the Connect 9.0

requirements

ICSFarLegPrice A string[11]. The calculated Far Leg Price required

when trading an ICS expiry as part of the Connect 9.0

requirements

MaxClipSize The integer used to determine the Maximum clip size

to be used by SyOMS when working the Ghost order

(if used) in the market

LocalUserName A String[11] – X link referece

LocalTrader A String[21] – X link reference

LocalBOF A String[21] – X link reference

LocalOrderID A String[11] – X link referece

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 131

LocalExAcct A String[11] – X link referece

RoutingID1 A String[11] – X link referece

RoutingID2 A String[11] – X link referece

AmendOrderType A String[11] containing the order type to be

amended. Otherwise, the order type name from the

order being amended.

TargetUserName A String[11] containing the target user name

clientIdShortCode String[21] – exchange short code

clientIdType Char – valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

commodityDerInd Char - valid values:

Y – Yes

N - No

DEA Char - valid values:

Y – Yes

N - No

executionDecision String[21] – exchange short code

executionDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

investmentDecision String[21] – exchange short code

investmentDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

liquidityProvider Char - valid values:

Y – Yes

N - No

shortSelling Char - valid values:

0 – <empty>

1 – SESH – no exception

2 – SESX – with exception

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 132

3 – SELL – no short sale

4 – UNDI – not available

tradingCapacity Char - valid values:

1– DEAL

2 – MTCH

3 - AOTC

ancillaryTrading Char - valid values:

Y – Yes

N - No

ptAmendOrderEx

The normal call (ptAmendOrder) attaches the logon username to the trade. The

ptAmendOrderEx function call may be used to attach a different username to the order, for

example so that a multi-user gateway application can set usernames for receiving exchange

member rates on the eCBOT and CME exchanges. The order must be in one of the following

states: ptWorking, ptPartFilled, ptHeldOrder, ptFilled or ptBalCancelled. If the order is

ptWorking, ptPartFilled or ptHeldOrder then all fields must be specified in the NewDetails

structure. If the order is ptFilled or ptBalCancelled then only the Trader field is valid for

change and the other fields are ignored.

Arguments: OrderID (string[11] writeable, by reference)

 NewDetails (struct read-only, by reference)

 UserName (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems ID of the

order to change. This value is returned to the application by the ptOrder

callback.

NewDetails Address of a structure of type AmendOrderStruct, containing the

new details for the order. See ptAmendOrder.

Username A string[11] variable to receive the username to attach to the trade.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 133

Argument/Returns Value

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData API does not currently hold any order

 information.

 ptErrAmendDisabled Amend is not supported by the

 exchange. Use cancel/add.

 ptErrInvalidState Order may not be amended at this

 time.

 ptErrInvalidPrice New price not valid.

 ptErrInvalidVolume New volume not valid.

 ptErrUnknownAccount Contract name/ date does not refer

 to a valid contract.

 ptErInvalidAmendOrderType Order cannot be amended to this

 order type.

ptAmendAlgoOrder

The ptAmendAlgoOrder routine changes the details for an order already accepted by the

system. It does exactly the same as ptAmendOrder with the addition of Algo XML buffer to be

amended. AlgoBuff is defined as an array of char.

Arguments: OrderID (string[11] writeable, by reference)

 BuffSize (integer read-only, by reference)

 AlgoBuff (struct read-only, by reference)

 NewDetails (struct read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems ID of the

order to change. This value is returned to the application by the ptOrder

callback.

BuffSize Size of the AlgoBuff

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 134

Argument/Returns Value

AlgoBuff Array of char containing the Algo XML.

NewDetails Address of a structure of type AmendOrderStruct, containing the

new details for the order. See ptAmendOrder.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData API does not currently hold any order

 information.

 ptErrAmendDisabled Amend is not supported by the

 exchange. Use cancel/add.

 ptErrInvalidState Order may not be amended at this

 time.

 ptErrInvalidPrice New price not valid.

 ptErrInvalidVolume New volume not valid.

 ptErrUnknownAccount Contract name/ date does not refer

 to a valid contract.

 ptErInvalidAmendOrderType Order cannot be amended to this

 order type.

ptAtBest (callback)

The ptAtBest callback triggers when At Best price information (firm and volume) is available.

The callback indicates the exchange, contract and contract-date for which there is new data.

Not all exchanges support At Best prices – the Sydney Futures Exchange is one that does. At

Best prices become available (if supported by the exchange) when a regular price

subscription is made via ptSubscribePrice.

Arguments: AtBestData (struct read-only, by reference)

Returns: None

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 135

Argument/Returns Value

AtBestData Address of a structure of type AtBestUpdStruct. The application

routine will receive the contract updated in this parameter.

AtBestUpdStruct read-only, by reference

ExchangeName: string[11]

ContractName: string[11]

ContractDate: string[11]

On receipt of this callback the application should call ptGetContractAtBest to obtain the new

At Best details (firm, volume, bid or offer) and ptGetContractAtBestPrices to obtain the actual

At Best prices.

Note: The callback must be registered with the ptRegisterAtBestCallback routine.

ptBlankPrices

The ptBlankPrices can be called by the application in response to notification, via a callback,

that the application has lost connectivity with the Price Feed server.

In this circumstance, it is advisable to notify the user that all bid and offer prices can no

longer be relied upon. A simple method of doing this is to remove all current prices from the

screen. This routine is provided for this purpose. A subsequent call to the ptGetPrice routine

will return zero for all bid and offer prices and volumes.

Arguments: None

Returns: None

ptCancelOrder

The ptCancelOrder routine submits a cancellation for the specified order. Completion of the

routine does not imply that the cancellation has been successful, just that the cancel has

been submitted to the host. This function will return an error code if there is no connection

to a transaction server.

Arguments: OrderID (string[11] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 136

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to be cancelled. This is the value returned by the ptOrder

callback for a new order and uniquely identifies the order on PATS.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

 ptErrUnknownOrder The order ID does not refer to a

 known order.

 ptErrInvalidState Order is not in a valid state to cancel.

The orders may be cancelled when they are in any of the following states: ptWorking,

ptHeldOrder, ptPartFilled, ptUnconfirmedPartFilled. Cancels will not be submitted for orders

in completed states (such as filled) or in transition states (such as amend pending, queued).

The order will transition to ptCancelPending state. Further cancels for this order must not be

considered unless the order reverts to one of the working states listed above. Do not submit

further cancels for an order already in the pending cancel state.

ptCancelOrderEx

The ptCancelOrderEx routine is functionally the same ptCancelOrder, submits a cancellation

for the specified order. However additional arguments are available.

Arguments: OrderID (string[11] read-only, by reference)

 UserName (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 137

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to be cancelled. This is the value returned by the ptOrder

callback for a new order and uniquely identifies the order on PATS.

UserName Address of a string[11] variable containing the username to be used for

the action.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

 ptErrUnknownOrder The order ID does not refer to a

 known order.

 ptErrInvalidState Order is not in a valid state to cancel.

ptCancelOrderEx2

The ptCancelOrderEx2 routine is functionally the same ptCancelOrder, submits a

cancellation for the specified order. However additional arguments are available.

Arguments: OrderID (string[11] read-only, by reference)

 ClientID (string[21] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 138

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to be cancelled. This is the value returned by the ptOrder

callback for a new order and uniquely identifies the order on PATS.

ClientID Address of a string[21] variable containing the Patsystem ClientID value

to be used.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

 ptErrUnknownOrder The order ID does not refer to a

 known order.

 ptErrInvalidState Order is not in a valid state to cancel.

ptCancelAll

The ptCancelAll routine submits cancellations for all orders for the specified trader account,

in any contract. Completion of the routine does not imply that the cancellations have been

successful, just that the cancels have been submitted to the host. Cancels for orders nearest

to the market are submitted first (by comparing limit price to current last traded price).

Arguments: TraderAccount (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 139

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account to cancel

orders for.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

ptCancelAllEx

The ptCancelAllEx routine submits cancellations for all orders for the specified trader

account, in any contract. Completion of the routine does not imply that the cancellations

have been successful, just that the cancels have been submitted to the host. Cancels for

orders nearest to the market are submitted first (by comparing limit price to current last

traded price).

Arguments: TraderAccount (string[11] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account to cancel

orders for.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 140

Argument/Returns Value

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

ptCancelBuys

The ptCancelBuys routine submits cancellations for all buy orders for the trader, for the

Exchange-ContractName-ContractDate combination supplied. Completion of the routine

does not imply that the cancellations have been successful, just that the cancels have been

submitted to the host. Cancels for orders nearest to the market are submitted first (by

comparing limit price to current last traded price).

Arguments: TraderAccount (string[11] read-only, by reference)

 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account to cancel

orders for.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 141

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name of the

contract to delete orders for.

ContractName Address of a string[11] variable containing the contract name to delete

orders for.

ContractDate Address of a string[51] variable containing the contract date to delete

orders for.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

If the application has made a call to ptSetUserIDFilter to enable filtering, a call to

ptCancelBuys will only cancel buy orders that have been entered by the currently logged in

user.

The orders may be cancelled when they are in any of the following states: ptWorking,

ptHeldOrder, ptPartFilled, ptUnconfirmedPartFilled. Cancels will not be submitted for orders

in completed states (such as filled) or in transition states (such as amend pending)

ptCancelSells

The ptCancelSells routine submits cancellations for all sell orders for the trader, for the

Exchange-ContractName-ContractDate combination specified. Completion of the routine

does not imply that the cancellations have been successful, just that the cancels have been

submitted to the host. Cancels for orders nearest to the market are submitted first (by

comparing limit price to current last traded price).

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 142

Arguments: TraderAccount (string[11] read-only, by reference)

 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account to cancel

orders for.

ExchangeName Address of a string[11] variable containing the exchange name of the

contract to cancel orders for.

ContractName Address of a string[11] variable containing the contract name to cancel

orders for.

ContractDate Address of a string[51] variable containing the contract date to delete

orders for.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

If the application has made a call to ptSetUserIDFilter to enable filtering, a call to

ptCancelSells will only cancel sell orders that have been entered by the currently logged in

user.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 143

The orders may be cancelled when they are in any of the following states: ptWorking,

ptHeldOrder, ptPartFilled, ptUnconfirmedPartFilled. Cancels will not be submitted for orders

in completed states (such as filled) or in transition states (such as amend pending).

ptCancelOrders

The ptCancelOrders routine submits cancellations for all orders for the trader, for the

Exchange-ContractName-ContractDate combination supplied. Completion of the routine

does not imply that the cancellations have been successful, just that the cancels have been

submitted to the host. Cancels for orders nearest to the market are submitted first (by

comparing limit price to current last traded price).

Arguments: TraderAccount (string[11] read-only, by reference)

 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account to cancel

orders for.

ExchangeName Address of a string[11] variable containing the exchange name of the

contract to delete orders for.

ContractName Address of a string[11] variable containing the contract name to delete

orders for.

ContractDate Address of a string[51] variable containing the contract date to delete

orders for.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 144

Argument/Returns Value

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

If the application has made a call to ptSetUserIDFilter to enable filtering, a call to

ptCancelOrders will only cancel buy orders that have been entered by the currently logged in

user.

ptActivateOrder

The ptActivateOrder routine submits order activation to a previous order with inactive flag

set. Completion of the routine does not imply that the activation has been successful, just

that the activation has been submitted to the host. This function will return an error code if

there is no connection to a transaction server.

Arguments: OrderID (string[11] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to be activated. This is the value returned by the ptOrder

callback for a new order and uniquely identifies the order on PATS.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 145

Argument/Returns Value

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

 ptErrUnknownOrder The order ID does not refer to a

 known order.

 ptErrInvalidState Order is not in a valid state to

 activate.

ptDeactivateOrder

The ptDeactivateOrder routine submits order deactivation to a previous order with active

flag set. Completion of the routine does not imply that the deactivation has been successful,

just that the deactivation has been submitted to the host. This function will return an error

code if there is no connection to a transaction server.

Arguments: OrderID (string[11] read-only, by reference)

 OrderDetail (struct read-only, by reference Optional)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to be deactivated. This is the value returned by the ptOrder

callback for a new order and uniquely identifies the order on PATS.

OrderDetail (Optional) Address of a structure of type OrderDetailStruct where the API will write

the result. See ptGetOrder. Applicable fields to set/modify in the

structure:

 DEA

 executionDecision

 investmentDecision

 clientIdShortCode

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 146

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API holds no order information.

 ptErrUnknownOrder The order ID does not refer to a

 known order.

 ptErrInvalidState Order is not in a valid state to

 deactivate.

ptCountFills

The ptCountFills function returns the number of fills held for the user in the API. This value is

useful for loop control when calling ptGetFill to obtain fill details. Fills are not stored in the

order they are received in and cannot be indexed by index. They are stored in Fill I.D. order.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable where the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErNoData The API holds no fill information.

ptCountOrderHistory

The ptCountOrderHistory function returns the number of order history records held for the

given order in the API. This value is useful for loop control when calling ptGetOrderHistory to

obtain order history details. The order history count includes the current active (non-

historical) order.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 147

Arguments: Index (integer read-only, immediate value)

 Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Index of the order for which to retrieve the history count.

Count Address of an integer variable where the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Index value does not refer to a valid

 record.

 ptErNoData The API holds no order information.

ptCountOrders

The ptCountOrders function returns the number of order records held for the user in the API.

This value is useful for loop control when calling ptGetOrder to obtain order details. This

value is the number of orders held in the API, with each order containing several history

records that record the changes in order state.

Arguments: Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Count Address of an integer variable where the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 148

Argument/Returns Value

 ptErNoData The API holds no order information.

ptCountContractAtBest

The ptCountContractAtBest routine counts the number of At Best prices records that exist

for a given contract. The returned value can be used in a loop to read the list using

ptGetContractAtBest.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name.

ContractDate Address of a string[51] variable containing the contract date.

Count Address of an integer variable where the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

ptCountContractSubscriberDepth

The ptCountContractSubscriberDepth routine counts the number of Subscriber Depth prices

records that exist for a given contract. The returned value can be used in a loop to read the

list using ptGetContractSubscriberDepth.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 149

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 Count (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name.

ContractDate Address of a string[51] variable containing the contract.

Count Address of an integer variable where the API will write the result.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

Subscriber Depth is like At Best prices, in that it provides individual volume for each firm at a

given price. The routine currently only applies to the Sydney Futures Exchange (ASX).

ptFill (callback)

The ptFill callback signals that a fill has been received. Fills are usually received in response

to an order, but can be received as a result of the administrator entering fill details manually

(an external fill), and they can be generated by the system to show the previous nights

position (a netted fill). Details are provided in the callback’s OrderID parameter to identify

these fill types.

Arguments: OrderID (string[11] read-only, by reference)

 FillID (string[71] read-only, by reference)

Returns: None

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 150

Argument/Returns Value

OrderID Address of a string[11] variable that will contain the Patsystems Order

ID to which the fill applies. For external or netted fills, the field will

contain “EXTERNAL” or “NETTED” as appropriate.

FillID Address of a string[71] variable that will contain the Patsystems Fill ID

of the fill. This value can be used to retrieve Fill information using

ptGetFillByID.

Note: The callback must be registered with the ptRegisterFillCallback routine.

When a normal fill is received in response to an order trading, the ptOrder callback will also

fire, since the order has undergone a state change. However, there is no guarantee which

event will fire first, so the application must be prepared to process both.

The returned Order ID for a normal fill may be used to filter the output of ptGetFill so that the

up to date list of all fills for the order can be read. After this callback executes, the fill list and

trading position details for the trader include this latest fill.

The returned Fill ID for a normal fill can be passed to ptGetFillByID to directly access the fill

details.

An EXTERNAL fill is a fill entered by the system administrator to reflect a trade or position

done outside the Patsystems environment. A NETTED fill is received at the start of day to

reflect an over-night position known to the Patsystems environment. The price for a NETTED

fill is the settlement price from the previous day’s close. These types of fills have no order ID.

ptGetAveragePrice

The ptGetAveragePrice routine returns the average price of the open fills for the trader in a

given contract. This can be used to show how the open profit or loss fluctuates with market

movement.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 Price (string[21] writeable, by reference)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 151

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account that the

query is for. Fills not for this account will be ignored.

Price Address of a string[21] variable to contain the average price of the open

fills. This value converts to a floating point number.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData API does not hold any fill data at the

 current time.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

 ptErrNotEnabled This function is not enabled for

 gateway application.

This function is not enabled for gateway applications. It is expected that gateway

applications will remove orders and fills during processing and this invalidates the position

calculation used by this routine.

ptGetContractAtBest

The ptGetContractAtBest routine returns the appropriate At Best data for the At Best bid and

offer price for a given contract. This can be supplied if and only if the exchange supports At

Best price data. Most exchange interfaces used by Patsystems do not support At Best data.

Arguments: ExchangeName (string[11] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 152

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 Index (integer read-only, by reference)

 AtBestData (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

Index Integer specifying which record to return. Specify a value between 0 and

ptCountContractAtBest – 1 where the Exchange-ContractName-

ContractDate combination is the same as that specified for this

function.

AtBestData Address of a data structure of type AtBestStruct where the API will

write the details. The structure is defined as:

AtBestStruct read-only, by reference

Firm: string[4]

Volume: integer

BestType: char - ‘B’ if the At Best price is a bid or ‘O’ if

 the At Best price is an offer.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

This function is designed to be used by first calling ptCountContractAtBest which will return

the number of At Best data records for a specific Exchange-ContractName-ContractDate

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 153

combination. This count data is then used to supply the upper limit for the index field in

ptGetContractAtBest for the same Exchange-ContractName-ContractDate combination.

ptGetContractAtBestPrices

The ptGetContractAtBestPrices routine returns the appropriate At Best price Bid/Offer for a

given contract. At Best prices are available (if supported by the exchange) once a call to

ptSubscribePrice has been made.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 AtBestPrices (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

AtBestPrices Address of a data structure of type AtBestPricesStruct where the API

will write the price details. The structure is defined as:

AtBestPricesStruct read-only, by reference

BidPrice: string[21]

OfferPrice: string[21]

LastBuyer: string[4]

Lastseller: string[4]

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 154

Argument/Returns Value

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

ptGetContractPosition

The ptGetContractPosition routine returns the current total position of the trader for a given

contract. This includes both the open and closed position. Profit is reported in contract

currency. This function is not enabled for gateway applications. It is expected that gateway

applications will remove orders and fills during processing and this invalidates the position

calculation used by this routine.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 Position (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the name of the exchange for

the contract to be queried.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account that the

query is for. Fills not for this account will be ignored.

Position Address of a structure of type PosititionStruct where the API will

write the data. PositionStruct is defined as:

PositionStruct

Profit: string[21] - the total profit in the contract,

 reported in contract currency. Converts to a

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 155

Argument/Returns Value

 floating point number.

Buy: integer - the current total buy volume in this

 contract.

Sell: integer - the current total sell volume in this

 contract.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData API does not hold any fill data at the

 current time.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

ptGetContractSubscriberDepth

The ptGetContractSubscriberDepth routine returns the appropriate Subscriber Depth data

for a given contract. This can be supplied if and only if the exchange supports Subscriber

Depth price data. Most exchange interfaces used by Patsystems do not support Subscriber

Depth data, although the Sydney Futures Exchange does.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 Index (integer read-only, by reference)

 SubscriberDepthData (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 156

Argument/Returns Value

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

Index Integer specifying which record to return. Specify a value between 0 and

ptCountContractSubscriberDepth – 1 where the Exchange-

ContractName-ContractDate combination is the same as that specified

for this function.

SubscriberDepthData Address of a data structure of type SubscriberDepthStruct where

the API will write the price details. The structure is defined as:

SubscriberDepthStruct read-only, by reference

Price: string[21]

Volume: integer

Firm: string[4]

DepthType char - that contains B for bid or O for

 offer

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

Subscriber Depth is available (when supported by the exchange) once an appropriate call to

ptSubscribeBroadcast has been made.

This function has been designed such that it is used by first calling

ptCountContractSubscriberDepth. This will return the number of Subscriber Depth data

records for a specific Exchange-ContractName-ContractDate combination.

The returned book can be determined by ordering the bids and offers by price.

ptGetFill

The ptGetFill routine returns fill details, indexed by the Index parameter. There is no facility

to filter or index data by contract or Patsystems order ID. The application must read the list

in index order and discard any records it does not require. For example, to obtain all fills for

an order, the entire list of fills is read and fills for other orders ignored.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 157

Arguments: Index (integer read-only, by reference)

 FillDetails (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Integer value indicating which record to return. Supply a value between

0 and ptCountFills – 1.

FillDetails Address of a structure of type FillStruct where the API will write the

result. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

FillStruct

Field Description

Index An integer variable containing the index number of

this record. New fills may be inserted in the middle of

this list. Use ptGetFillByID for direct access.

FillID A string[71] variable that uniquely identifies the fill

on PATS.

ExchangeName A string[11] variable to contain the exchange name of

the order.

ContractName A string[11] variable to contain the contract name of

the order.

ContractDate A string[51] variable to contain the contract date of

the order.

BuyOrSell A char variable, either ‘B’ or ‘S’.

Lots An integer variable to contain the number of lots

filled.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 158

Price A string[21] variable to contain the price the order

was filled at. This value should be converted to a

floating point number.

OrderID A string[11] variable to contain the Patsystems ID of

the order filled.

DateFilled A string[9] variable to contain the date the fill

occurred.

TimeFilled A string[7] variable to contain the time of the fill.

DateHostRecd A string[9] variable to contain the date the host

received the fill.

TimeHostRecd A string[7] variable to contain the time the host

received the fill.

ExchOrderID A string[31] field to contain the exchange order ID,

which uniquely identifies the order on the exchange.

FillType A byte variable to contain the fill type. This is one of:

ptNormalFill, ptExternalFill or ptNettedFill. External

fills are ones entered by the administrator to reflect a

trade done outside the Patsystems environment.

Netted fills appear in the morning to show the

trader’s overnight position.

TraderAccount A string[21] variable to contain the trader account

used to submit the order.

UserName A string[11] variable to contain the user who

submitted the order.

ExchangeFillID String[71] Deprecated field previously used by

FIXTGW field for CME FX.

ExchangeRawPrice String[20] Deprecated field previously used by

FIXTGW field for CME FX.

ExecutionID String[71] Deprecated field previously used by

FIXTGW field for CME FX.

GTStatus Integer variable containing the Global Trading staus

of the fill

SubType Integer variable – this is used for Settlement and

Minute markets

CounterParty String[21] Counter Party Information for SGX

Leg String[3] A String containing the number of legs

clientIdShortCode String[21] – exchange short code

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 159

clientIdType Char – valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

commodityDerInd Char - valid values:

Y – Yes

N - No

DEA Char - valid values:

Y – Yes

N - No

executionDecision String[21] – exchange short code

executionDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

investmentDecision String[21] – exchange short code

investmentDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

liquidityProvider Char - valid values:

Y – Yes

N - No

shortSelling Char - valid values:

0 – <empty>

1 – SESH – no exception

2 – SESX – with exception

3 – SELL – no short sale

4 – UNDI – not available

tradingCapacity Char - valid values:

1– DEAL

2 – MTCH

3 - AOTC

ancillaryTrading Char - valid values:

Y – Yes

N - No

fillTimeStamp Time of fill - YYYYMMDD:hh.mm.ss.ssssss

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 160

ptGetFillByID

The ptGetFillByID routine returns fill details for the fill with the given Fill ID. This provides an

easy mechanism to find the fill details for a fill triggered by the ptFill callback. The callback

will provide a Fill ID, which can be passed to this query function.

Arguments: FillID (string[71] read-only, by reference)

 FillDetails (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

FillID Address of a string[71] variable containing the Patsystems Fill ID of the

Fill required.

FillDetails Address of a structure of type FillStruct where the API will write the

result. See ptGetFill.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

ptGetGenericPrice

The ptGetGenericPrice method allows the user to retrieve specific prices from the price

structure. This is limited to the RFQ Tradable and Indicative prices at this time, and will be

extended as sporadic prices of this nature are added. This will generally be called following a

generic price callback received by the client application.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 161

 PriceType (integer read-only, by reference)

 Side (integer read-only, by reference)

 Price (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

PriceType Generic price type to be retrieved by the method

Side Integer value containing one of the following values: ptBuySide,

ptSellSide, ptBothSide or ptCrossSide.

Price Price structure to be populated by the method is a PriceDetailStruct

and is defined as:

PriceDetailStruct

Price: string[21]

Volume: integer - the volume (if relevant) of the price

 type requested

AgeCounter: byte – if zero the price has expired

Direction: byte – 0 = same, 1 = rise, 2 = fall

Hour: byte

Minute: byte

Second: byte

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 162

ptGetOpenPosition

The ptGetOpenPosition routine returns the current open position of the trader for a given

contract. To evaluate this open position as the market moves, the application should call

ptGetAveragePrice to obtain the average price of these open fills. Profit is reported in

contract currency.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 Position (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account that the

query is for. Fills not for this account will be ignored in calculating the

position.

Position Address of a structure of type PositionStruct where the API will write

the data. PositionStruct is defined as:

PositionStruct

Profit: string[21] - the total profit in the contract,

 reported in contract currency. Converts to a

 floating point number.

Buy: integer - current open buy volume.

Sell: integer - current open sell volume.

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 163

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API does not hold any fill data

 time

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

ptGetOrder

The ptGetOrder routine returns the details for an order held for the user in the API. The data

is returned in Order ID order.

Arguments: Index (integer read-only, by reference)

 Orderdetail (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Integer value indicating which record to return. Supply a value between

0 and ptCountOrders – 1.

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 164

OrderDetailStruct

Field Description

Index An integer variable containing the index number of

this record. This value is guaranteed to directly

access the same record while the application is

attached to the API.

Historic A char variable containing Y or N. The most recent

record for the order has this value set to N. All other

records have this set to Y.

Checked A char variable containing Y or N depending on

whether the ptOrderChecked routine has been called

yet. Example use is to record that the customer has

been notified of the fill.

OrderID A string[11] variable that identifies the order in PATS.

This is the value returned by the ptOrder callback

and used as input to other order manipulation

routines. A negative number means the order is a

synthetic order held locally.

DisplayID A string[11] variable. If the order is a synthetic order

not yet triggered, this field is blank. Otherwise it is

the displayable version of the OrderID above.

ExchOrderID A string[31] variable to contain the ID that uniquely

identifies the order on the exchange.

UserName A string[11] variable to contain the user who

submitted the order.

TraderAccount A string[21] variable to contain the trader account for

the order.

OrderType A string[11] variable to contain the order type of the

order. This is one of the values returned by

ptGetOrderType.

ExchangeName A string[11] variable to contain the exchange the

order was sent to.

ContractName A string[11] variable to contain the contract name the

order is for.

ContractDate A string[51] variable to contain the contract date the

order is for, Together with ContractName this

specifies the contract that the order is in.

BuyOrSell A char variable, either ‘B’ or ‘S’.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 165

Price A string[21] variable to contain the order price. This

converts to a floating point number.

Price2 A string[21] variable containing the limit price for a

stop/limit order. Blank if not required.

Lots An integer variable to contain the number of lots for

the order.

LinkedOrder A string[11] variable containing the Patsystems order

Id of the other order for OCO orders.

AmountFilled An integer variable to contain the number of lots

filled so far.

NoOfFills An integer variable containing the number of fills

received so far for the order.

AveragePrice A string[21] variable to contain the average price the

order has been filled at. This value converts to a

floating point number and is a decimal, even for

fractionally priced contracts like the 30 Year Bond.

Status A byte variable to contain the order status. The valid

options and their meanings are listed in the

OrderStatus table that follows this table

OpenOrClose ‘O’ if the order is opening a position, ‘C’ if the order is

to close a position.

DateSent A string[9] variable to contain the date the order was

sent to the host as CCYYMMDD.

TimeSent A string[7] variable containing the local time on your

PC that the order was sent HHMMSS.

DateHostRecd A string[9] variable to contain the date the host

received the order as CCYYMMDD.

TimeHostRecd A string[7] variable containing the time the host

received the order. The server may run in a different

time zone than your local PC.

DateExchRecd A string[9] variable to contain the date the exchange

received the order.

TimeExchRecd A string[7] variable containing the time the exchange

received the order. The server may run in a different

time zone than your local PC.

DateExchAckn A string[9] variable to contain the date the exchange

acknowledged receipt of the order.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 166

TimeExchAckn A string[7[variable to contain the time the exchange

acknowledged the order. The server may run in a

different time zone than your local PC.

NonExecReason A string[61] variable containing the reason the order

was not executed or other text information.

Xref An integer variable containing the user supplied

cross reference tag set in ptAddOrder. Is zero if the

API has been such down since the record was added.

XrefP An integer variable containing the user supplied

cross reference tag set in ptAddOrder. This cross

reference persists even if the API has been shutdown

UpdateSeq An integer variable containing the sequence in which

the historical records should be read, from lowest

(earliest) to highest (latest).

GoodTillDate A string[9] variable containing the good till date for

the order as CCYYMMDD.

Reference A string[26] variable containing an extended Pats

order reference.

Priority An integer variable to set priority that can be sent

along with the order. Has meaning only for some

exchanges.

TriggerDate A string[9] variable containing a date to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

TriggerTime A string[7] variable containing a time to trigger the

order. Has meaning for SyOMS order types and some

other liquidity pools.

Sub-state An integer variable reflecting sub-states of main

order states. Generally with is used to distinguish

orders working at the exchange and those working

on the SyOMS server.

BatchID A string[11] variable Used to determine orders

placed/received in batches (for example, wholesale

trade orders).

BatchType A string[11] variable Describes the type of batch

being placed/received (for example, a crossing batch

has the batch type 42)

BatchCount An integer describing the number of records in the

batch.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 167

BatchStatus A string[11] variable describes the status of the batch

as it is passed through the system.

ParentID A string[11] variable used to determine the parent

order associated with Aggregate, Customer Request,

and Orders placed as part of Order Management

Integeration (see ptOMIEnabled)

DoneForDay A char variable used to determine if an Aggregate

Order is completed, and if so whether the order and

associated child orders can be modified. Introduced

as part of the OMI functionality

BigRefField A string[256] reference variable that will be echoed

back on subsequent order responses.

Timeout Integer used by RFQT orders, this is returned by the

exchange with a timeout duration for which the RFQT

is valid. Only available if the RFQT flag is enabled for

the exchange.

QuoteID String[121] Used by RFQT orders, this is returned by

the exchange with a timeout duration for which the

RFQT is valid. When an update is received from the

exchange regarding this RFQ with a new time, this

Quote ID is used to identify the RFQ in question (as

this could be relevant across different placed RFQ

orders with different PATS order ids). Only available if

the RFQT flag is enabled for the exchange.

LotsPosted Integer value – not in use

ChildCount Integer value – not in use

ActLots Integer value – not in use

SenderLocationID A string[33]. It is geographic location of end user (2

character country code). For users based in US and

Canada this should also include state code:

e.g. US, IL (for US, Illinois)

Note: This field is required for orders placed on CME

exchange. Follow this link to get list of codes

ftp.cmegroup.com/fix/coo”}

Rawprice String[21] Deprecated field previously used by

FIXTGW field for CME FX.

Rawprice2 String[21] Deprecated field previously used by

FIXTGW field for CME FX.

ExecutionID String[71] Deprecated field previously used by

FIXTGW field for CME FX.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 168

ClientID A string[21] variable used to determine the client ID

of the order. Can be used to set CME’s SenderSubId

tag 50 value instead of username.

ESARef String[51] Deprecated field previously used by

FIXTGW field for CME FX.

ISINCode A string[21] variable used to represent the ISIN Code

entered when a Basis order is placed

CashPrice A string[21] variable used to hold the cash price

entered when a Basis order is placed

Methodology A char variable used to represent the value entered

for the Methodology when a Basis order is placed

BasisRef A string[21] variable used to determine any reference

passed back to the client for a Basis order

EntryDate A string[9] value used to hold the date the order was

sent from the STAS when the order was originally

placed

EntryTime A string[7] value used to hold the time the order was

sent from the STAS when the order was originally

placed

APIM A Char value used to describe the APIM value

required by Connect 9.0 and CME exchanges.

 ‘M’ for manually entered orders.

 ‘A’ for automatically entered orders.

APIMUser A string[21] variable used to describe the ITM code

assigned to the third party developer to comply with

Connect 9.0 exchanges.

ICSNearLegPrice A string[11] used to hold the calculated Near Leg

Price required when trading an ICS expiry as part of

the Connect 9.0 requirements

ICSFarLegPrice A string[11] used to hold the calculated Far Leg Price

required when trading an ICS expiry as part of the

Connect 9.0 requirements

CreationDate Placed by the API, this is a string[9] used to

determine the date the order was created originally.

OrderHistorySeq The integer used to determine the sequence of the

order update in the lifcycle of the order

MinClipSize The integer used to determine the minimum clip size

to be placed for a ghost order

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 169

MaxClipSize The integer used to determine the mazimum clip size

to be placed for a ghost order

Randomise The Char used to determine if the clips placed by a

ghost order are random.

ProfitLevel The Char used to determine the protection level of

the order if it is an order placed by SyOMS as part of a

bracket order.

OFSeqNumber Integer variable – Patsystems specific field

ExchangeField String[11] variable - Patsystems specific field

BofID String[21] variable - Patsystems specific field

Badge String[6] - Patsystems specific field

GTStatus Integer variable containing the Global Trading status

of the order

LocalUserName String[11] variable used in Cross link

LocalTrader String[21] variable used in Cross link

LocalBOF String[21] variable used in Cross link

LocalOrderID String[11] variable used in Cross link

LocalExAcct String[11] variable used in Cross link

RoutingID1 String[11] variable used in Cross link

RoutingID2 String[11] variable used in Cross link

FreeTextField1 String[21] free text field

FreeTextField2 String[21] free text field

Inactive Char indicating if the order is inactive or not

clientIdShortCode String[21] – exchange short code

clientIdType Char – valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

commodityDerInd Char - valid values:

Y – Yes

N - No

DEA Char - valid values:

Y – Yes

N - No

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 170

executionDecision String[21] – exchange short code

executionDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

investmentDecision String[21] – exchange short code

investmentDecisionType Char - valid values:

0 – Undef

1 – Person

2 – Algorithm

3 – Legal Entity

liquidityProvider Char - valid values:

Y – Yes

N - No

shortSelling Char - valid values:

0 – <empty>

1 – SESH – no exception

2 – SESX – with exception

3 – SELL – no short sale

4 – UNDI – not available

tradingCapacity Char - valid values:

1– DEAL

2 – MTCH

3 - AOTC

ancillaryTrading Char - valid values:

Y – Yes

N - No

Order states

State Description

PtQueued Submitted to PATSAPI

PtSent Received by Patsystems server,

order is in transit

PtWorking Accepted by exchange as a valid

order

PtRejected Rejected, either by Patsystems or by

the exchange

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 171

PtPartFilled Order has been partly filled

PtFilled Order has been completely filled

PtCancelled Order has been cancelled

ptBalCancelled The outstanding balance has been

cancelled

ptCancelPending The requested cancel received by

Patsystems server, order is in transit

ptAmendPending The requested amend received by

Patsystems server, order is in transit

ptUnconfirmedFilled The order has filled but the fills have

not yet reached PATS

ptUnconfirmedPartFilled The order has part filled but the fills

have not reached PATS

ptHeldOrder Order is a synthetic order waiting

for price to trigger

ptCancelHeldOrder Synthetic order has been cancelled

ptTransferred Transferred the order to a trader

account not in the user’s Trader

Account Group

ptExternalCancelled The order was cancelled because

the exchange has closed

Unconfirmed fills: The Unconfirmed states may result from an inquiry on the exchange

(made by ptQueryOrderStatus), an order amendment or cancellation.

These may notify the system that volume has executed but the

resulting fill has not been received. This state can be turned off by

specifying the application as type ptGateway

Held orders: These order states apply to orders held locally in the API, not on the

server.

Order sub-states

State Description

ptSubStatePending The order is being held by SYOMS,

prior to being triggered by market

conditions

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 172

ptSubStateTriggered The synthetic order has been

triggered and is working in the

market

Fill sub-states

State Description

ptFillSubTypeSettlement A settlement market fill

ptFillSubTypeMinute A minute market fill

ptFillSubTypeUnderlying A fill message for the

underlying leg when the

market closes for minute or

settlement order

ptFillSubTypeReverse A reverse fill – always has a

negative volume to cancel the

orignal position on the minute

or settlement market order

ptGetOrderEx

The ptGetOrderEx routine returns the details for an order held for the user in the API. It does

exactly the same as ptGetOrder with the addition Algo XML structure and size. The return

values are the same for ptGetOrderEx.

Arguments: Index (integer read-only, by reference)

 AlgoDetail (struct writeable, by reference)

 AlgoSize (integer writeable, by reference)

 OrderDetail (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Integer value indicating which record to return. Supply a value between

0 and ptCountOrders – 1.

AlgoDetail Array of char containing the Algo XML.

AlgoSize Size of the AlgoDetail

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 173

Argument/Returns Value

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

ptGetOrderByID

The ptGetOrderById routine returns the details for an order held for the user in the API. The

data is returned in chronological order.

Arguments: OrderID (string[11] read-only, by reference)

 OrderDetail (struct writeable, by reference)

 OFSequence (integer read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to query. This value is returned by the ptOrder callback and

uniquely identifies the order on PATS. Synthetic orders managed by the

API have Ids starting eith “S”.

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See ptGetOrder for details of OrderDetailStruct.

OFSequence The index of the order update within the list of order updates for that

order ID, where 1 is the first order update. Value is defaulted to zero for

backwards compatibility. This value is passed back to the client in the

Order Callback.

Status ptSuccess Successful

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 174

Argument/Returns Value

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

ptGetOrderByIDEx

The ptGetOrderByIdEx routine returns the details for an order held for the user in the API. It

does exactly the same as ptGetOrderById adding the extra Algo XML information and buffer

size. The return values are also the same as ptGetOrderById.

Arguments: OrderID (string[11] read-only, by reference)

 OrderDetail (struct writeable, by reference)

 AlgoDetail (struct writeable, by reference)

 AlgoSize (integer writeable, by reference)

 OFSequence (integer read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to query. This value is returned by the ptOrder callback and

uniquely identifies the order on PATS. Synthetic orders managed by the

API have Ids starting eith “S”.

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See ptGetOrder for details of OrderDetailStruct.

AlgoDetail Array of char containing the Algo XML.

AlgoSize Size of the AlgoDetail

OFSequence The index of the order update within the list of order updates for that

order ID, where 1 is the first order update. Value is defaulted to zero for

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 175

Argument/Returns Value

backwards compatibility. This value is passed back to the client in the

Order Callback.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

 ptErrNoData API does not hold any fill data at this

 time.

ptGetOrderHistory

The ptGetOrderHistory routine returns the details for a version of an order held for the user

in the API. The data is returned in reverse chronological order (ie. newest first).

Arguments: Index (integer read-only, by reference)

 Position (integer read-only, by reference)

 OrderDetail (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Index of the order for which to retrieve the history record.

Position Position of the history record.

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See ptGetOrder for details of OrderDetailStruct.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 176

Argument/Returns Value

 ptErrNoData API does not hold any fill data at this

 time.

ptGetOrderHistoryEx

The ptGetOrderHistoryEx routine returns the details for a version of an order held for the

user in the API. It does exactly as ptGetOrderHistory with the additional Algo XML buffer and

buffer size. The return is also the same as ptGetOrderHistory. AlgoDetail is defined as an

array of char.

Arguments: Index (integer read-only, by reference)

 Position (integer read-only, by reference)

 OrderDetail (struct writeable, by reference)

 AlgoDetail (struct writeable, by reference)

 AlgoSize (integer writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Index of the order for which to retrieve the history record.

Position Position of the history record.

OrderDetail Address of a structure of type OrderDetailStruct where the API will

write the result. See ptGetOrder for details of OrderDetailStruct.

AlgoDetail Array of char containing the Algo XML.

AlgoSize Size of the AlgoDetail

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrInvalidIndex Value of index is out of range.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 177

Argument/Returns Value

 ptErrNoData API does not hold any fill data at this

 time.

ptGetPrice

The ptGetPrice routine returns price information for a contract, indexed by the Index

parameter. This index matches the index used by ptGetContract on a one-for-one basis.

Prices are returned in a record structure. Each “price” contains the price, the volume and an

age counter. The volume field does not apply to all fields.

Arguments: Index (integer read-only, by reference)

 CurrentPrice (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

Index Address of a string[11] variable containing the exchange name.

CurrentPrice Address of a structure of type PricesStruct where the current prices

will be written. PriceStruct is a structure containing multiple

occurrences of a structure PriceDetailStruct, one for each price,

followed by the contract date market status and a mask indicating the

prices which have changed since the last call to ptGetPrice or

ptGetPriceForContract. See below.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData Exchange, Contract and Date not

 recognised.

 ptErrInvalidIndex Value of index is out of range.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 178

PriceDetailStruct

Field Description

Price A string[21] variable containing the

price. Converts to a floating point

number. The price applies to all

price types other than “Total”

Volume An integer variable containing the

volume. volume applies to “Bid”,

“Offer”, “Last”, “Total” and all

“DOM” fields. For other price types

this field will be zero.

AgeCounter A byte variable containing the value

of the price countdown timer. If it is

set to MaxAge then this is a fresh

price, if zero then the counter has

expired.

Direction A byte variable indicating the

direction of price movement since

the last price. This will be

ptPriceNormal, ptPriceRise or

ptPriceFall.

Hour A byte variable containing the hour

that the price was received.

Minute A byte variable containing the

minute that the price was received.

Second A byte variable containing the

second that the time was received.

The AgeCounter value can be used to determine whether a price type has been updated or

expired. It is maintained for all price items including opening, closing, depth and time &

sales last traded prices.

It must be realised that shortly after some of these prices are received (for example, the

intra-day high) they may expire, and the age counter become zero. This is normal if these

prices are updated at a low frequency and does not indicate a fault.

If a Bid, Offer or Last traded price expires then this should be noted: these prices are updated

on a frequent basis and should not expire in a busy market.

The Limit Up, Limit Down, Execution Up, Execution Down and Reference Price describe

elements of specific exchanges. The Limit prices describe the price range available for the

contract during the day. The Execution prices describe the current price range that can be

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 179

traded, and the Reference price (usually the last traded price) describes the mid-point of the

execution prices.

The settlement prices are now split between Current Settlement Price (pvCurrStl, and

equates to the settlement price received at the end of the previous days trading), SOD

Settlement (pvSODSTL, and describes the Settlement Price received from the exchange at

the beginning of the trading day), YDSP (pvYDStl, and describes the yesterday settlement)

and New Settlement Price (pvNewStl, and describes a settlement price received during the

trading day).

Indicative Bid and Indicative offer determine any indicative prices broadcast by the

exchange for the contracts in question.

PriceDetailStruct

Note: There are 20 levels of Depth of Market data but not all are always populated.

There are 20 levels of Last Traded data for providing time and sales.

Field Type Description

Bid PriceDetailStruct Best Bid

Offer PriceDetailStruct Best Offer

ImpliedBid PriceDetailStruct Implied Bid

ImpliedOffer PriceDetailStruct Implied Offer

RFQ PriceDetailStruct RFQ, Request For Quote

Last0 PriceDetailStruct Last Traded [0..20], 0 is the most recent

Last1

…

Last18

PriceDetailStruct

Last19 PriceDetailStruct Last 20 Trades

Total PriceDetailStruct Total Traded Volume

High PriceDetailStruct High

Low PriceDetailStruct Low

Opening PriceDetailStruct Opening

Closing PriceDetailStruct Closing

BidDOM0 PriceDetailStruct Bid Level 0 (Depth of market)

BidDOM1

…

BidDOM18

PriceDetailStruct

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 180

OfferDOM19 PriceDetailStruct Offer Level 19 (Depth of market)

LimitUp PriceDetailStruct Limit Up

LimitDown PriceDetailStruct Limit Down

ExecutionUp PriceDetailStruct Execution Up

ExecutionDown PriceDetailStruct Execution Down

ReferencePrice PriceDetailStruct Reference Price (relevant for TGE

exchange only)

pvCurrStl

(Legacy – no longer

in use)

PriceDetailStruct Current Settlement Price

pvSODStl

(Legacy – no longer

in use)

PriceDetailStruct Settlement Price received from the

exchange at the beginning of the

trading day.

pvNewStl

(Legacy – no longer

in use)

PriceDetailStruct Settlement Price received during the

trading day.

pvIndBid PriceDetailStruct Indicativer Bid Price (relevant for CME

exchange only).

pvIndOffer PriceDetailStruct Indicative Offer Price (relevant for CME

exchange only).

Status Integer An integer containing the current

Market Status of the contract date. See

ptStatusChange for details.

Mask Integer An integer bitmask indicating which

prices have changed since the last call

to ptGetPrice or ptGetPriceForContract.

PriceStatus Integer Price status (relevant for TGE exchange

only).

The value for the Mask in the PriceStruct is a set of bits where each bit position marks that a

particular type of price changed. To test for specific price changes, perform a logical AND

operation against the following enumerated types supplied by the API.

Price

Type Description

ptChangeBid Offer Price/Volume has changed

ptChangeOffer Offer Price/Volume has changed

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 181

ptChangeImpliedBid Implied Bid Price/Volume has

changed

ptChangeImpliedOffer Implied Offer Price/Volume has

changed

ptChangeRFQ RFQ volume has changed

ptChangeLast Last 20 prices have changed

ptChangeTotal Total Traded Volume has changed

ptChangeHigh High Price has changed

ptChangeLow Low Price has changed

ptChangeOpening Opening Price has changed

ptChangeClosing Closing (Settlement) Price has

changed

ptChangeBidDOM Bid DOM Prices have changed

ptChangeOfferDOM Offer DOM Prices have changed

ptGetPriceForContract

The ptGetPriceForContract routine returns price information for a contract. This call is

similar in nature to ptGetPrice.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 CurrentPrice (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name for the

contract date to be queried.

ContractName Address of a string[11] variable that contains the contract name to

query.

ContractDate Address of a string[51] variable that contains the contract date of the

contract to query

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 182

Argument/Returns Value

CurrentPrice Address of a structure of type PricesStruct where the current prices

will be written. PriceStruct is a structure containing multiple

occurrences of a structure PriceDetailStruct, one for each price,

followed by the contract date market status and a mask indicating the

prices which have changed since the last call to ptGetPrice or

ptGetPriceForContract. See ptGetPrice.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData Exchange, Contract and Date not

 recognised.

 ptErrInvalidIndex Value of index is out of range.

ptGetTotalPosition

The ptGetTotalPosition routine returns the current total overall position of the trader over

all contracts. This includes the open and closed position. Profit is reported in the system

currency.

Arguments: TraderAccount (string[21] read-only, by reference)

 Position (struct writeable, by reference)

Returns: status (integer)

Argument/Returns Value

TraderAccount Address of a string[21] variable containing the trader account that the

query is for. Fills not for this account will be ignored in calculating the

position.

Position Address of a structure of type PositionStruct where the API will write

the data. PositionStruct is defined as:

PositionStruct

Profit: string[21] - the total profit in the contract,

 reported in contract currency. Converts to a

 floating point number.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 183

Argument/Returns Value

Buy: integer - current open buy volume.

Sell: integer - current open sell volume.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData The API does not hold any fill data

 time

 ptErrUnknownContract Exchange, Contract and Date not

 recognised.

ptOrder (callback)

The ptOrder callback signals that an order has undergone a status change. The callback

returns a structure containing the identity of the order that has changed, and its old Order

ID. It does not contain information about the change itself. The calling program should then

use the ptGetOrderByID function to obtain the latest details of the order.

Arguments: OrderData (struct writeable, by reference)

Returns: None

Argument/Returns Value

OrderData Address of a structure of type OrderUpdStruct. The application routine

will receive the order details in this parameter.

 OrderUpdStruct

 OrderID: string[11] – order id

 OldOrderID: string[11] - the original order ID. This value is

 used when the order ID changes from the

 local number to the order ID assigned by the

 server. For example, N1 to 100010 when order

 goes from Queued to Sent.

 OrderStatus: byte - the current status of the order.

 OFSeqNumber: integer - the order sequence number

 OderTypeID: integer - the order type ID. Future reference

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 184

Orders managed on the server, including SyOMS order types, will show the PATS Order ID

immediately, because the API pre-allocates order numbers on the server.

Locally managed synthetic orders will reflect the change in order number from temporary

number (such as S1) to a PATS Order ID (such as 100123) for synthetic orders. This occurs

when the trigger price is reached. Be aware that disconnection of the price feed will affect

the ability of the API to see the trigger price.

Note: The callback must be registered with the ptRegisterOrderCallback routine.

ptOrderChecked

The ptOrderChecked function sets the Checked field for the order. This field is available to

read in the OrderDetailStruct structure returned by ptGetOrder. The Checked field has no

effect on the API in any way – its use is designed to be purely external to the API. The API

preserves the value over shutting down and restarting of the application.

Arguments: OrderID (string[11] read-only, by reference)

 Checked (char read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems order ID of

the order to query. This value is returned by the ptOrder callback and

uniquely identifies the order on PATS.

Checked Value to be set by the application

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownOrder Order specified does not exist.

 ptErrNoData API does not hold any fill data at this

 time.

An example use of the field and this function would be to maintain a reconciliation flag to

indicate that the electronic order has been checked against the corresponding paperwork,

or that the customer has been notified.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 185

ptGetPriceSnapShot

The ptPriceSnapshot routine requests the Price Server to supply prices for the instrument

passed to it. The routine can either wait for a reply from the price server, or return

immediately. In either case the receipt of the prices will be notified by the ptPriceUpdate

callback routine.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 Wait (Integer read-only, by reference)

Returns: status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name for the

contract date to be queried.

ContractName Address of a string[11] variable that contains the contract name to

query.

ContractDate Address of a string[51] variable that contains the contract date of the

contract to query

Wait An integer value containing the number of milliseconds to wait for the

price reply. If this value is set to zero, the routine will return

immediately with ptSuccess. If the value is set to INFINITE ($FFFFFFFF),

the routine will wait indefinitely for a price reply. For any other value the

routine will wait for the specified amount of time. If a price reply occurs

before the time has run out, ptSuccess will be returned. If the routine

times out, ptErrFalse will be returned.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData Exchange, Contract and Date not

 recognised.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 186

Argument/Returns Value

 ptErrUnknownContract The Exchange, Contract and Date

 was not recognised

ptGetPriceStep

The ptPriceStep routine can be used to adjust a price up or down by a number of ticks.

Arguments: Price (double read-only, by reference)

 TickSize (double read-only, by reference)

 NumSteps (integer read-only, by reference)

 TicksPerPoint (Integer read-only, by reference)

Returns: adjustedPrice (double)

Argument/Returns Value

Price Original price to adjust from

TickSize Minimum tick size for the commodity to which the price belongs

NumSteps Number of steps by which to adjust the price. Can be negative.

TicksPerPoint Number of ticks per point for the commodity to which the price belongs.

adjustedPrice New adjusted price.

The routine is used to correctly tick up or down a price by a certain number of ticks. This

means that fractional price movements can be correctly calculated.

ptPriceUpdate (callback)

The ptPriceUpdate callback fires whenever a new price is received for any contract. The

callback returns the contract for which the price has changed.

Arguments: PriceData (struct writeable, by reference)

Returns: None

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 187

Argument/Returns Value

PriceData Address of a structure of type PriceUpdStruct. The application

routine will receive the order details in this parameter.

 PriceUpdStruct

 ExchangeName: string[11]

 ContractName: string[11]

 ContractDate: string[51]

Note: The callback must be registered with the ptRegisterPriceCallback routine.

ptPurge

ptPurge is called to purge expired objects from memory within the API. Objects are expired

when a contract date expires and all its orders and fills are automatically expired. These

objects will persist within the API until ptPurge is called or the user logs out.

Arguments: PDate (string read-only, by reference)

 PTime (string read-only, by reference)

Returns: None

Argument/Returns Value

Date

Time

ptPurge takes 2 arguments: the date and time purge is performed by the client application,

taken directly from the system time. These parameters are to remove the situation where

the API receives extra expired updates for objects that the client has not yet received and

therefore purges more objects than the client during the purge.

ptPurge does not return a value but it does trigger the purgeComplete callback on each

exchange as the purge is completed for each exchange.

ptQueryOrderStatus

Some exchanges, such as Eurex, may sometimes delay the delivery of a fill. Such exchanges

provide a mechanism where we can query the order status and even if the fill details are not

available, our servers can determine the quantity of the order that has been filled.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 188

Arguments: OrderID (string[11] read-only, by reference)

Returns: status (integer)

Argument/Returns Value

OrderID Address of a string[11] variable containing the Patsystems Order

ID that identifies this order on the system.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrNoData Exchange, Contract and Date not

 recognised.

 ptErrUnknownOrder ID specified does not match a valid

 order.

 ptErrQueryDisabled Order query is not supported by the

 exchange.

 ptErrInvalidState Order may not be amended at this

 time.

The ptQueryOrderStatus routine issues such a message to the host. If a fill has in fact been

delayed, this action may result in an order state change to one of the “Unconfirmed” states.

For example, the state may change from “Working” to “Unconfirmed Filled”.

The call itself does not provide any order status information. This will be returned using the

normal ptOrder callback mechanism.

ptSetUserIDFilter

The ptSetUserIDFilter routine is used to enable or disable the filtering of order records. This

will be applied when cancelling multiple orders with the ptCancelAll, ptCancelBuys and

ptCancelSells.

Arguments: Enable (char readonly, immediate value)

Returns: status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 189

Argument/Returns Value

Enable A character ‘Y’ will enable filtering of orders by the currently logged in

user ID, altering the behaviour of the cancellation routines listed above.

Specifying ‘N’ disables this filtering. By default, filtering is disabled.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

ptStatusChange (callback)

The ptSetUserIDFilter routine is used to enable or disable the filtering of order records. This

will be applied when cancelling multiple orders with the ptCancelAll, ptCancelBuys and
ptCancelSells.

Arguments: Data (struct writeable, by reference)

Returns: None

Argument/Returns Value

Data Address of a structure of type StatusUpdStruct containing details

about what status changed, and its new value. See below.

Note: The callback must be registered with the ptRegisterStatusCallback routine.

StatusUpdStruct

Field Description

ExchangeName A string[11] variable containing the exchange name.

ContractName A string[11] variable containing the contract name.

ContractDate A string[51] variable containing the contract date.

Status An integer bitmask to define what market status

changes have occurred for this contract maturity.

The Status value contains a bitmask where each bit represents a status change. To test for a

status value, you should perform a logical AND operation between the Status value and the

enumerated types listed below and supplied by the API.

Not all state changes apply to all markets. Many markets do not report state changes

through the Patsystems servers at all.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 190

Status Values

Status Description

ptStateExDiv Ex-dividend status

ptStateAuction Auction status

ptStateSuspended Suspended status

ptStateClosed Closed status

ptStatePreOpen Pre-Open status

ptStatePreClose Pre-Close status

ptStateFastMarket Fast Market Status

ptSubscriberDepthUpdate (callback)

The ptSubscriberDepthUpdate callback is triggered whenever the Subscriber Depth data has

changed for a contract. The callback will notify what exchange, contract and contract-date

has had an update. The application should then call ptGetContractSubscriberDepth to obtain

the price, firm and volume information.

Arguments: SubscriberDepthData (struct read-only, by reference)

 ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

Returns: None

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

SubscriberDepthData Address of a data structure of type SubscriberDepthStruct where

the API will write the price details. The structure is defined as:

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 191

Argument/Returns Value

SubscriberDepthStruct read-only, by reference

Price: string[21]

Volume: integer

Firm: string[4]

DepthType char - that contains B for bid or O for

 offer

Most exchanges do not supply subscriber price details. The Sydney Futures Exchange is one

exchange that does. Subscriber Depth data is available (if supported by the exchange) once

a call to ptSubscribeBroadcast has been made.

Note: The callback must be registered with the ptRegisterSubscriberDepthCallback

routine.

ptTicker (callback)

Patsystems is not designed as a tick-by-tick price feed, but when used in conjunction with a

real time price feed can provide a close approximation of a ticker.

Arguments: Data (struct writeable, by reference)

Returns: None

Argument/Returns Value

Data Address of a structure of type TickerUpdStruct containing details

about what ticker change, and its new value. See below.

The ticker callback fires whenever a bid, offer or last price or volume has altered. The

intention is to provide a ticker feed of prices, such that no prices are missed. This may cause

the prices to be delivered more slowly that the regular price callback.

The regular price callback receives prices every 100 milliseconds or so – the regular Market

Data Server issues price updates to regular API connections no more often than every 100ms.

Registering the ticker callback will inform the Market Data Server to send prices in a close to

real time manner – there is still a small timing window.

The regular price callback simply notifies your application that a price has updated and the

application must then query for the price. This introduces yet another timing window during

which price updates may be missed. The regular interface is suitable for a trading display of

quotes that is being viewed by a user. Due to the timing windows mentioned, it is not

suitable for a program that depends on a ticker interface to capture every trade.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 192

Note: The callback must be registered with the ptRegisterTickerCallback routine.

TickerUpdStruct

Field Description

ExchangeName A string[11] variable containing the exchange name.

ContractName A string[11] variable containing the contract name.

ContractDate A string[51] variable containing the contract date.

BidPrice A string[21] variable containing the price. Converts to

a floating point number under the rules of the

contract. Please be aware of fractional based pricing

on some CBOT products.

BidVolume An integer variable containing the volume.

OfferPrice A string[21] variable containing the price. Converts to

a floating point number under the rules of the

contract. Please be aware of fractional based pricing

on some CBOT products.

OfferVolume An integer variable containing the volume.

LastTradedPrice A string[21] variable containing the price. Converts to

a floating point number under the rules of the

contract. Please be aware of fractional based pricing

on some CBOT products.

LastTradedVolume An integer variable containing the volume.

Bid A char variable, either Y or N, to indicate if this

message contains an update to the bid or bid

volume.

Offer A char variable, either Y or N, to indicate if this

message contains an update to the offer or offer

volume.

Last A char variable, either Y or N, to indicate if this

message contains an update to the last or last

volume.

Note: In order to get every last trade, you may also need to query the current total

traded volume in order to determine if two identical last trade price and

volume messages are as a result of two trades or a result of one trade and a

bid or offer being pulled from the market.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 193

Buying Power Functions

The following functions obtain buying power details from the API. Buying Power (or “Cash

Margining” as it is more correctly known) is an alternative means of risk management, using

available Net Liquidity to the trader, the trader’s Profit & Loss, and the Margin Per Lot

required when trading a specific contract. Buying power risk management is applied per

trader account.

There are several terms that go into calculating Cash Margining.

Margin Required

The Margin For Trade of any magnitude is defined as:

MarginReqd = MPL*Vol

Where:

MPL the margin-per-lot required to trade the specific

contract

Vol the lot size of the order

Open Position Exposure

This value is accumulated each time a trade is made that creates or increases an open

position. This is regardless of whether the open position is long or short. Working orders are

also taken into account to calculate their potential impact on the open position via a worst-

case scenario. The resulting figure is an integer representing the Open Position Exposure for

the trader in each contract.

Buying Power Remaining

Buying Power Remaining is expressed as:

 BPRemaining = SODLNV – OPE + P&L

Where:

SODLNV the start of day net liquidity value, loaded from the

backoffice

OPE the open position exposure

P&L the current total profit and loss

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 194

The following routines will often return data as a percentage. In these cases, the values are

expressed as a percentage of the available buying power, defined as SODLNV+P&L.

ptBuyingPowerRemaining

The ptBuyingPowerRemaining routine is used to retrieve the buying power remaining for a

trader account for a given contract. If an invalid contract is passed, then the total buying

power remaining for the given trader account is returned.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 BPRemaining (string[21] writeable, by reference)

Returns: Status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

BPRemaining Address of a string[21] variable containing the value for the Buying

Power Remaining as a percentage of the SODLNV+P&L.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 195

Argument/Returns Value

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

ptBuyingPowerUsed

The ptBuyingPowerUsed routine is used to retrieve the buying power used for a trader

account for a given contract. If an invalid contract is passed, then the total buying power

used for the given trader account is returned.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 BPUsed (string[21] writeable, by reference)

Returns: Status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

BPUsed Address of a string[21] variable containing the value for the Buying

Power Used as a percentage of the SODLNV+P&L.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 196

Argument/Returns Value

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

ptMarginForTrade

The ptMarginForTrade routine is used to retrieve the margin for a trade about to take place,

for a trader account for a given contract. This retuns the current margin requirement for this

trade and for maintaining any existing positions.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 Lots (integer read-only, by reference)

 OrderID (string[11] read-only, by reference)

 Price (string[21] read-only, by reference)

 MarginReqd (string[21] writeable, by reference)

Returns: Status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 197

Argument/Returns Value

Lots Address of an integer variable containing the number of lots about to be

traded.

OrderID Address of a string[11] variable containing The ID of the order you are

amending. If you are not amending an order leave this field blank.

Price Address of a string[21] variable containing the price you are amending

the order to, if you are not amending the order leave this field blank.

MarginReqd Address of a string[21] variable containing the Margin required for the

trade about to be made.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

ptOpenPositionExposure

The ptOpenPositionExposure routine is used to retrieve the buying power exposure for a

trader account for a given contract. If an invalid contract is passed, then the total exposure

for the given trader account is returned.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 Exposure (string[21] writeable, by reference)

Returns: Status (integer)

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 198

Argument/Returns Value

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

Exposure Address of a string[21] variable containing the Open Position Exposure,

expressed as a percentage of the total available “cash”, SODNLV + P&L.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

The percentage cost of a specific trade when compared to an account's real-time value as

presently marked-to market, and can be calculated by the following equation:

 Open Position Exposure (%) = No. of Lots * Margin

 --------------------------- * 100

 (SODNLV + P&L)

ptPLBurnRate

The ptPLBurnRate routine is used to retrieve the buying power burn rate for a trader account

for a given Contract.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 BurnRate (string[21] writeable, by reference)

Returns: Status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 199

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

BurnRate Address of a string[21] variable to write the Burn Rate (as a percentage)

to.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

The Burn Rate expresses the percentage of the Trader Account’s equity (cash) that is being

lost or expended, and can be calculated by the following equation:

BurnRate (%) = (P&L / SODNLV) * 100.

ptGetMarginPerLot

The ptMarginPerLot routine is used to retrieve the margin per lot for a trader account for a

given contract. All parameters are mandatory and must be for a valid contract.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 MarginReqd (string[21] writeable, by reference)

Returns: Status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 200

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

MarginReqd Address of a string[21] variable containing the Margin required for the

trade about to be made.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

ptTotalMarginPaid

The ptTotalMarginPaid routine is used to retrieve the total margin for a trader account or for

a trader account on a given Contract. If no exchange name or contract name or contract date

is given, the routine will calculate total margin for the given trader account. However, if the

contract details are specified then total margin will be for the specified account and

contract.

Arguments: ExchangeName (string[11] read-only, by reference)

 ContractName (string[11] read-only, by reference)

 ContractDate (string[51] read-only, by reference)

 TraderAccount (string[21] read-only, by reference)

 TotalMargin (string[21] writeable, by reference)

Returns: Status (integer)

Client Trading API – Application Developer’s Kit Developer’s guide

API Version 8.9.0+

 201

Argument/Returns Value

ExchangeName Address of a string[11] variable containing the exchange name.

ContractName Address of a string[11] variable containing the contract name to query.

This value is one of the values returned by ptGetContract.

ContractDate Address of a string[51] variable containing the contract date of the

contract to query. Both this and ContractName must be specified in the

query. The value is one of the values returned by ptGetContract.

TraderAccount Address of a string[21] variable containing the trader account.

TotalMargin Address of a string[21] variable containing the Total Margin for the

trader account against the specified Contract date.

Status ptSuccess Successful

 ptErrNotInitilaised API is not initialised (ptInitialise)

 ptErrNotLoggedOn The API is not currently logged on to

 the host.

 ptErrUnknownAccount Supplied TraderAccount name does

 not refer to a valid record.

TraderAccount parameter is mandatory and must be a valid account name. To get total

margin for a contract, ExchangeName, ContractName and ContractDate must be specified. If

any of the three parameters are blank the routine will calculate total margin for the given

trader account.

 1

